机器学习应用与趋势手册:算法、方法与技术

5星 · 超过95%的资源 需积分: 10 40 下载量 137 浏览量 更新于2024-09-25 1 收藏 11.98MB PDF 举报
《机器学习应用与趋势手册:算法、方法与技术》是一本由Emilio Soria Olivas、José David Martín Guerrero、Marcelino Martínez Sober、Jose Rafael Magdalena Benedito以及Antonio José Serrano López等多位来自西班牙瓦伦西亚大学的专家合著的两卷本著作,收录在2009年由Information Science Reference出版。该书的ISBN号为1605667668,总共有834页,以PDF格式提供,文件大小约为11.9MB。这本书聚焦于机器学习领域,深入探讨了该领域的各种应用和最新发展趋势,包括但不限于算法设计、方法论和技术策略。 书中涵盖了广泛的机器学习主题,从基础理论到实践应用,旨在为研究人员、工程师和专业人士提供一个全面的参考框架。它不仅介绍了经典的机器学习算法如决策树、支持向量机、神经网络和深度学习,还关注了这些技术在诸如自然语言处理、计算机视觉、生物信息学、推荐系统和大数据分析等领域的最新进展和创新。 作者们不仅提供了对现有技术和工具的深入剖析,还讨论了新兴技术和可能的发展趋势,帮助读者理解和掌握如何在不断变化的技术环境中优化机器学习解决方案。此外,书中可能还包含案例研究和实战指南,以便读者能够将理论知识应用于实际问题解决中。 编辑团队由Kristin Klinger担任总监,Jamie Snavely任高级执行编辑,Michael Brehm是副执行编辑,Sean Woznicki负责排版,而封面设计则由Lisa Tosheff操刀。该书由Yurchak Printing Inc.印刷,并在美国发行,版权由IGI Global所有,强调了尊重知识产权的重要性。 《机器学习应用与趋势手册》对于希望深入了解机器学习理论与实践的专业人士而言,是一本极具价值的参考资料,它不仅提供了丰富的学术洞察,还为未来的科研和行业实践提供了宝贵的指导。无论是研究生、教师还是业界从业者,通过阅读这本书,都能紧跟机器学习领域的前沿动态,提升自己的专业素养。
2010-12-10 上传
Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques Emilio Soria Olivas University of Valencia, Spain José David Martín Guerrero University of Valencia, Spain Marcelino Martinez Sober University of Valencia, Spain Jose Rafael Magdalena Benedito University of Valencia, Spain Antonio José Serrano López University of Valencia, Spain Contents Chapter 1 Exploring the Unknown Nature of Data: Cluster Analysis and Applications Chapter 2 Principal Graphs and Manifolds Chapter 3 Learning Algorithms for RBF Functions and Subspace Based Functions Chapter 4 Nature Inspired Methods for Multi-Objective Optimization Chapter 5 Artificial Immune Systems for Anomaly Detection Chapter 6 Calibration of Machine Learning Models Chapter 7 Classification with Incomplete Data Chapter 8 Clustering and Visualization of Multivariate Time Series Chapter 9 Locally Recurrent Neural Networks and Their Applications Chapter 10 Nonstationary Signal Analysis with Kernel Machines Chapter 11 Transfer Learning Chapter 12 Machine Learning in Personalized Anemia Treatment Chapter 13 Deterministic Pattern Mining On Genetic Sequences Chapter 14 Machine Learning in Natural Language Processing Chapter 15 Machine Learning Applications in Mega-Text Processing Chapter 16 FOL Learning for Knowledge Discovery in Documents Chapter 17 Machine Learning and Financial Investing Chapter 18 Applications of Evolutionary Neural Networks for Sales Forecasting of Fashionable Products Chapter 19 Support Vector Machine based Hybrid Classifiers and Rule Extraction thereof: Application to Bankruptcy Prediction in Banks Chapter 20 Data Mining Experiences in Steel Industry Chapter 21 Application of Neural Networks in Animal Science Chapter 22 Statistical Machine Learning Approaches for Sports Video Mining Using Hidden Markov Models Chapter 23 A Survey of Bayesian Techniques in Computer Vision Chapter 24 Software Cost Estimation using Soft Computing Approaches Chapter 25 Counting the Hidden Defects in Software Documents Chapter 26 Machine Learning for Biometrics Chapter 27 Neural Networks for Modeling the Contact Foot-Shoe Upper Chapter 28 Evolutionary Multi-Objective Optimization of Autonomous Mobile Robots in Neural-Based Cognition for Behavioural Robustness Chapter 29 Improving Automated Planning with Machine Learning