时间分辨光谱研究RR-P3HT薄膜中极化子对动态

0 下载量 189 浏览量 更新于2024-08-27 收藏 776KB PDF 举报
本文主要探讨了在RR-P3HT(全同聚3-己基噻吩)薄膜中,通过时间分辨光谱学方法研究极化对偶子动态的过程。极化对偶子是聚合物太阳能电池中的一种重要现象,特别是在P3HT这样的共轭聚合物材料中,它们的形成与电荷传输密切相关。研究者采用了飞秒瞬态吸收和上转换荧光技术来深入理解这种动态行为。 在实验中,研究人员对比了纯荧光、基态漂白恢复以及极化对偶子吸收的动态特性。结果显示,极化对偶子并非简单地回到单线态激发态,而是特定形态位置上的地面状态,这些位置具有独特的吸收特征。这一发现揭示了RR-P3HT薄膜中极化对偶子行为的复杂性,可能涉及到不同的能量转移和重组机制。 上转换荧光技术在此研究中发挥了关键作用,因为它能够观察到非辐射过程中的能量转移,这在传统的荧光测量中可能被忽视。同时,通过瞬态吸收技术,研究人员得以追踪极化对偶子的形成、演化以及最终消失的整个动态过程。 RR-P3HT的多臂结构和侧链柔性对其极化对偶子行为有显著影响,这表明薄膜的微观形态对极化对偶子的寿命和动力学有着决定性的作用。了解这些特性对于优化P3HT基太阳能电池的性能至关重要,如提高光电转换效率,减少非辐射损失,以及设计更有效的能量收集机制。 因此,这项工作不仅提供了关于RR-P3HT中极化对偶子行为的新见解,也为改进聚合物太阳能电池的设计提供了宝贵的科学依据。未来的研究可能会聚焦于如何调控这些动态过程,以提升材料的稳定性和性能,从而推动可再生能源技术的发展。

Heatwaves impose serious impacts on ecosystems, human health, agriculture, and energy consumption. Previous studies have classified heatwaves into independent daytime, independent nighttime, and compound daytime-nighttime types, and examined the long-term changes in the three types. However, the underlying mechanisms associated with the variations in different heatwave types remain poorly understood. Here we present the first investigation of the local physical processes associated with the daytime, nighttime, and compound heatwaves over the global land during 1979–2020. The results show that three heatwave types occur frequently and increasingly in most regions worldwide. Nighttime and compound heatwaves exhibit stronger increases in both frequency (the yearly number of the events) and fraction (the ratio of the yearly number of one heatwave type to the total yearly number of all types) than daytime heatwaves. Composite diagnostic analyses of local meteorological variables suggest that daytime heatwaves are associated with increased solar radiation under dry conditions and reduced cloud cover and humidity under a clear sky. In contrast, nighttime heatwaves are typically accompanied by moist conditions with increases in cloud fraction, humidity, and longwave radiation at night. These synoptic conditions for daytime and nighttime heatwaves are combined to contribute to compound heatwaves. Local divergences and moisture fluxes responsible for different heatwaves are further revealed. Positive moisture divergence anomalies are seen in most land areas for daytime and compound heatwaves, while they mainly appear in low latitudes for nighttime heatwaves. Our research provides a comprehensive understanding of the local mechanisms of different heatwave types, informing future risks and impact assessments.分析语言特征

2023-06-08 上传