计算机视觉课程关键概念解析
版权申诉
5星 · 超过95%的资源 43 浏览量
更新于2024-08-11
2
收藏 579KB PDF 举报
"计算机视觉课程总结.pdf"
计算机视觉是一门多学科交叉的领域,它结合了图像处理、机器学习和人工智能等多个技术,旨在让计算机通过分析和理解图像来获取场景中的信息。格式塔法则在计算机视觉中起着重要的作用,它们是人类视觉系统组织和解析图像的基本原则。
1. Law of Proximity(相近):此原则指出,当图像中的元素彼此靠近时,人们倾向于将它们视为一个整体。在计算机视觉中,这个原理可以帮助聚类相似像素或检测图像中的连通组件。
2. Law of Similarity(相似):相似的物体或特征倾向于被组织在一起。在图像分析中,这可能用于颜色、纹理或亮度的分组。
3. Law of Common Fate(方向):共享相同运动方向的元素被感知为一个整体。在跟踪和运动分析中,这一原则尤其关键。
4. Law of Symmetry(对称):人类倾向于感知对称的对象,这在识别和重建物体形状时有用。
5. Law of Continuity(连续):连续的线条或形状容易被视为一个整体。在边缘检测和图像分割中,保持连续性可以帮助找到图像的结构。
6. Law of Closure(封闭):未完全封闭的形状会被大脑自动补全,以形成完整的图像。在图像恢复和完成任务中,这个概念可以指导算法如何填充缺失的信息。
Marr的视觉理论提供了一个信息处理的三层模型:计算层、表征和算法层以及实现层。这三层分别对应于理解问题、定义解决方案和实际执行的过程。在计算机视觉中,这三阶段对应于:
1. Primal Sketch阶段:提取图像的初步特征,如边缘、角点和纹理,形成基元图。
2. 2.5D Sketch阶段:估计场景的深度、法线方向和轮廓,包含部分三维信息。
3. 3D Model阶段:基于输入图像、基元图和2.5D信息,构建和识别三维物体模型。
在二值图像的分析中,有几种几何特性至关重要:
1. 尺寸和位置:通过零阶矩计算面积,通过一阶矩确定区域中心。
2. 方向:对于无定向形状如圆,需其他方法确定方向;而对于长形物体,长轴通常代表方向,或用最小子二乘法拟合确定。
3. 伸长率:比较最大与最小尺寸,反映物体的形状特征。
4. 密度:面积与周长平方比,指示物体的紧凑程度,如圆形(Cir)、正方形(Sqr)和矩形(Rect)之间的差异。
5. 欧拉数:图像的连通组件数量减去孔的数量,是识别物体和空洞的重要指标。
这些概念和原理在计算机视觉的各个应用中发挥着重要作用,如目标检测、图像分类、语义分割、形状分析和三维重建等。通过理解和应用这些理论,我们可以设计出更精确和智能的计算机视觉系统。
2018-09-14 上传
2023-03-11 上传
2021-10-06 上传
2021-10-04 上传
2021-09-28 上传
2023-05-11 上传
2021-09-28 上传
2023-11-07 上传
_webkit
- 粉丝: 31
- 资源: 1万+
最新资源
- Java集合ArrayList实现字符串管理及效果展示
- 实现2D3D相机拾取射线的关键技术
- LiveLy-公寓管理门户:创新体验与技术实现
- 易语言打造的快捷禁止程序运行小工具
- Microgateway核心:实现配置和插件的主端口转发
- 掌握Java基本操作:增删查改入门代码详解
- Apache Tomcat 7.0.109 Windows版下载指南
- Qt实现文件系统浏览器界面设计与功能开发
- ReactJS新手实验:搭建与运行教程
- 探索生成艺术:几个月创意Processing实验
- Django框架下Cisco IOx平台实战开发案例源码解析
- 在Linux环境下配置Java版VTK开发环境
- 29街网上城市公司网站系统v1.0:企业建站全面解决方案
- WordPress CMB2插件的Suggest字段类型使用教程
- TCP协议实现的Java桌面聊天客户端应用
- ANR-WatchDog: 检测Android应用无响应并报告异常