高速水面艇视觉系统视频稳像:SIFT特征与Kalman滤波的应用

需积分: 0 0 下载量 141 浏览量 更新于2024-09-08 收藏 877KB PDF 举报
高速水面艇视觉系统电子稳像算法研究是一篇针对高速水面艇在高速行驶过程中遇到的视频图像抖动问题的论文。水面艇由于高速运动、水流和风力的影响,视频画面稳定性受到挑战,这在实时监控和导航中可能导致关键信息丢失。论文提出了一种创新的解决方案,首先通过尺度不变特征变换(Scale-Invariant Feature Transform, SIFT)算法在视频中提取特征点,SIFT算法以其在各种尺度和旋转不变性而闻名,这对于高速运动场景中的特征匹配至关重要。 接着,研究人员利用仿射模型来估计图像运动参数,仿射变换是一种线性变换,可以描述图像中的平移、旋转和缩放等基本运动。这种模型有助于捕捉视频中复杂且动态的运动特性。 在运动参数估计之后,论文引入了卡尔曼滤波(Kalman Filter)对视频进行实时滤波。卡尔曼滤波是数据融合和预测的常用方法,在处理噪声和不确定性方面表现出色,能有效地平滑图像序列,去除抖动,提供更稳定的数据流。 最后,为了进一步提升图像质量,论文采用了相邻帧补偿法对每一帧图像进行补偿,这种方法利用前后帧之间的信息,通过帧间插值或像素级的调整来减少抖动痕迹,实现视频的稳定呈现。 该算法在实际应用中,被应用于高速水面遥控艇的视频数据处理,通过对比分析,结果显示算法对于高速水面艇视觉系统的视频图像稳像处理非常有效,不仅能提高图像的清晰度,还能保持视频的流畅性,对于远程操控和实时决策支持具有重要意义。 论文的研究工作得到了国家自然科学青年基金、国家留学基金委留学基金以及黑龙江省博士后基金的支持,作者团队由四位来自哈尔滨工程大学自动化学院的研究者组成,他们的专业领域包括水面舰船视觉系统信息增强、图像处理和特征提取等,共同为解决高速水面艇视觉系统的问题做出了贡献。 该研究的关键词包括高速水面艇、电子稳像、尺度不变特征、仿射模型和卡尔曼滤波,这些词汇反映了论文的核心技术和研究焦点,为相关领域的读者提供了深入理解和跟进的线索。总体来说,这篇论文提供了一种实用且高效的视频稳像处理方法,对提升高速水面艇视觉系统的性能具有重要的实践价值。

对下列文字的内容进行简单摘要:通过阅读、收集相关的无人船和 SLAM 文献资料对基于深度视觉的垃圾打捞无人船定 位导航系统设计内容和基础原理有了认识,从水面应用出发,选择适合本课题开展应用的 ORB-SLAM3 算法,该算法稀疏提取稳定抗干扰能力强,然后制定了学习和需要完成的任 务。 提出了在水面垃圾打捞无人船应用中的定位导航通过相机实现 SLAM 水面环境构图, 有效的在强光和阴雨天稳定跟踪特征采用金字塔模型然特征点分散均匀,闭环检测实现纠 正传感器累计误差,在仿真和实验中识别的三维地图效果和实际环境有一致性。 完成无人船建图后最后一步是实现无人船的定位导航, 完成导航算法仿真后结合 RVIZ 接口接收传感器数据,在软件中实现定位导航仿真和运行,实现了基于 ROS系统设计的差 分无人船平台可行性。最后结合 yolo 垃圾识别算法完成在水面近岸的垃圾打捞。 本课题在研究实践中,还存在不少的问题需要深入研究学习,ROS运行在 Jetson nano 平台上接收视觉数据运行实时性较差,无人船运行速度不能过快,这需要更换下一代jetson nano 平台提高算力,还需要深入研究 ROS 参考其他系统降低ROS 的处理延迟问题尝试改 进,由于个人技术水平和综合成本问题,视觉 SLAM 部分数据先在室内完成测试然后再进 岸水域完成定位导航测试,还是存在部分累计误差,在后续的方案下可能会尝试 360°激 光雷达融合视觉,对岸边的障碍物的判断会更加准确适应的天气和场景更多,视觉加激光 和其他传感器的融合无人船研究的发展趋势,本课题提供一个方案供参考。

2023-04-20 上传