C++实现整数划分并输出结果的完整代码示例
需积分: 50 187 浏览量
更新于2024-09-10
2
收藏 2KB TXT 举报
整数划分是指将一个给定的正整数n分解成若干个连续或不连续的整数之和的过程,同时要求这些整数的和等于n。在这个C/C++代码中,开发者实现了一个名为`q`的递归函数,用于解决整数划分问题。函数接受三个参数:n(待划分的整数)、m(子区间范围)以及i(记录已选择的整数的位置)。
首先,`q1`函数用于计算两个整数n和m的最大公约数,它是递归终止的条件,当n和m都小于1时返回0,当n或m为1时返回1,对于一般情况,如果n大于m,则递归调用自身处理n-m和m,直至找到最优解。
在`q`函数中,主要执行以下操作:
1. 当n等于目标值k且不等于m时,表示已经找到一个划分方案,输出结果并重置计数器i。
2. 如果n为1,直接输出1作为划分结果。
3. 如果m为1,输出n个1(n-1次1和一次1),因为每个子区间都是1。
4. 对于n小于m的情况,直接递归调用自身,不做其他处理。
5. 当n等于m时,输出当前的n,然后遍历之前选择的整数,并加上它们(set数组)。
6. 对于n大于m的情况,先输出m,将它添加到set数组中,然后递归处理剩余部分n-m和m,并在最后调整set数组的计数。
主函数`main`负责输入n,调用`q1`计算最大公约数,然后调用`q`进行实际的划分,每次划分后输出结果,并在处理完一个n后换行,直到读取到无效输入(n<=0)为止。
这个程序通过递归和动态存储解决方案,实现了对整数n的划分,并输出满足条件的划分结果。这对于理解和学习递归算法、整数分解等基础数学概念非常有帮助,同时也展示了如何在C/C++中实现此类问题的编程解决方案。
8587 浏览量
272 浏览量
199 浏览量
180 浏览量
224 浏览量
126 浏览量
2023-06-12 上传
2023-09-22 上传
![](https://profile-avatar.csdnimg.cn/86bb6eebfdc3490099372a3936957566_u010899135.jpg!1)
无边际的梦想无止境的追求
- 粉丝: 6
最新资源
- Linux系统下ELK-7.2.1全套组件安装教程
- 32x32与16x16图标合集,Winform与Web开发精选必备
- Go语言开发的PBFT算法在Ubuntu上的应用
- Matlab实现离散数据两样本卡方检验
- 周期均值法中长期预报VB代码下载
- 微型计算机原理与应用课件精讲
- MATLAB求解线性矩阵不等式(LMI)方法解析
- QT实现Echarts数据可视化教程
- Next.js构建Markdown技术博客实现与细节
- Oracle 11.2.0.4关键补丁更新指南
- Dev_PP2: 探索JavaScript编程核心
- MATLAB中三次样条曲线的fsplinem开发
- 国产Linux SSH连接工具FinalShell安装使用教程
- 科大研究生算法课程PPT及作业汇总
- STM32F系列微控制器的电子设计与编码基础
- 知名外企开源Verilog视频处理控制代码