掌握Java机器学习:从入门到实战

需积分: 9 53 下载量 157 浏览量 更新于2024-07-19 2 收藏 23.85MB PDF 举报
"Mastering Java Machine Learning"是一本深入讲解Java编程在机器学习领域应用的专业书籍,旨在帮助读者理解和掌握这一复杂而富有前景的技术。本书分为三个主要部分,分别探讨机器学习的基本概念、实际应用中的监督学习方法以及无监督学习技术。 首先,第一章"MachineLearningReview"回顾了机器学习的历史和发展,解释了什么是机器学习以及与非机器学习的区别。这部分介绍了核心概念和术语,如监督学习、无监督学习、半监督学习以及强化学习等基本类型及其子类型。同时,还讨论了用于机器学习的数据集种类,以及机器学习在现实世界中的广泛应用案例,如图像识别、自然语言处理和推荐系统等。 第二章"PracticalApproachtoReal-WorldSupervisedLearning"则转向了实际操作层面,关注于监督学习的实践方法。章节详细讲解了数据的正式描述和预处理步骤,包括特征工程和数据清洗的重要性。此外,它涵盖了特征相关性分析和维度降低技术,以提高模型的效率和准确性。模型构建阶段涉及选择合适的算法(如线性回归、决策树、支持向量机等),并通过模型评估、比较来优化模型性能。一个具体的案例研究——马匹肠炎分类,通过实例展示了如何将理论应用于解决实际问题。 第三章"UnsupervisedMachineLearningTechniques"着重于无监督学习技术,这些技术与监督学习有所不同,它们无需预先标记的数据就能学习模式。这部分讨论了无监督学习中普遍存在的问题,以及与监督学习相区别的独特挑战。内容涵盖聚类、降维、关联规则学习等技术,并强调了它们在发现隐藏结构和模式方面的价值。 "Mastering Java Machine Learning"是一本实用的指南,不仅介绍理论知识,还提供了一套完整的步骤和工具,让读者能够运用Java语言熟练地构建和实施各种机器学习项目。无论是初学者还是经验丰富的开发人员,都能从中获益匪浅,提升在现代IT行业中利用Java进行机器学习的能力。
2018-04-03 上传
Chapter 1, Machine Learning Review, is a refresher of basic concepts and techniques that the reader would have learned from Packt's Learning Machine Learning in Java or a similar text. This chapter is a review of concepts such as data, data transformation, sampling and bias, features and their importance, supervised learning, unsupervised learning, big data learning, stream and real-time learning, probabilistic graphic models, and semi-supervised learning. Chapter 2, Practical Approach to Real-World Supervised Learning, cobwebs dusted, dives straight into the vast field of supervised learning and the full spectrum of associated techniques. We cover the topics of feature selection and reduction, linear modeling, logistic models, non-linear models, SVM and kernels, ensemble learning techniques such as bagging and boosting, validation techniques and evaluation metrics, and model selection. Using WEKA and RapidMiner, we carry out a detailed case study, going through all the steps from data analysis to analysis of model performance. As in each of the other chapters, the case study is presented as an example to help the reader understand how the techniques introduced in the chapter are applied in real life. The dataset used in the case study is UCI HorseColic. Chapter 3, Unsupervised Machine Learning Techniques, presents many advanced methods in clustering and outlier techniques, with applications. Topics covered are feature selection and reduction in unsupervised data, clustering algorithms, evaluation methods in clustering, and anomaly detection using statistical, distance, and distribution techniques. At the end of the chapter, we perform a case study for both clustering and outlier detection using a real-world image dataset, MNIST. We use the Smile API to do feature reduction and ELKI for learning. Chapter 4, Semi-supervised Learning and Active Learning, gives details of algorithms and techniques for learning when only a small amount labeled data is present. Topics