BP模糊神经网络的Python实现与数据解析

版权申诉
5星 · 超过95%的资源 60 下载量 47 浏览量 更新于2024-10-18 19 收藏 11KB ZIP 举报
资源摘要信息: "本资源为BP模糊神经网络的Python实现,并包含相关数据。该实现带有详细的注解,便于理解和学习。为了进一步深入理解算法的实现过程,资源中还推荐了一篇博文,该博文详细介绍了BP模糊神经网络的算法实现。本资源的标签为模糊神经网络、深度学习、Python,这些关键词代表了资源的主要内容和研究领域。" BP模糊神经网络是一种将模糊逻辑与神经网络技术相结合的先进算法,它在处理具有不确定性和模糊性特征的数据时具有独特的优势。模糊逻辑提供了一种处理不精确信息的方式,而神经网络则提供了强大的学习和泛化能力。将这两种技术结合起来,可以提高模型对模糊数据的处理能力,并且能够学习到更加复杂和非线性的关系。 Python是一种广泛使用的高级编程语言,因其简洁易读的语法而受到许多数据科学家和工程师的喜爱。Python在机器学习和人工智能领域中非常流行,因为它拥有丰富的库和框架,如NumPy、Pandas、TensorFlow和PyTorch等,这些都极大地简化了数据处理和算法开发的工作。 在本资源中,BP模糊神经网络通过Python编程语言得到了实现。通过具体的代码实现,我们可以看到如何构建一个神经网络模型,如何设置网络的参数,以及如何对网络进行训练和测试。注解部分则帮助读者理解每一部分代码的功能和作用,这对于初学者来说尤为重要。 此外,资源中还提供了一个参考博客链接。通过访问该链接,我们可以了解到BP模糊神经网络算法实现的详细过程。这对于希望深入了解算法实现细节的读者来说是一个宝贵的资源。博文不仅提供了代码,还可能包含了算法的理论背景、设计思路、实验结果以及可能遇到的问题和解决方案。 标签中的"模糊神经网络"是该资源的核心概念,涉及将模糊逻辑与神经网络结合的研究。"深度学习"则可能指的是神经网络在本资源中所应用的深度学习技术,强调了网络结构的深度和复杂性。"Python"标签则强调了实现技术的选择,即使用Python语言进行编程实现。 压缩包子文件的名称"fnnp"可能代表了"模糊神经网络"(Fuzzy Neural Network)的缩写。由于没有提供具体文件内容,我们无法确定文件内具体包含的数据和代码,但从文件名可以推测它可能包含了模糊神经网络的实现代码及相关数据集。读者在获取文件后,可以通过解压缩软件打开,并根据文件目录结构进行相应的学习和实验。
2018-10-30 上传
It is known that there is no sufficient Matlab program about neuro-fuzzy classifiers. Generally, ANFIS is used as classifier. ANFIS is a function approximator program. But, the usage of ANFIS for classifications is unfavorable. For example, there are three classes, and labeled as 1, 2 and 3. The ANFIS outputs are not integer. For that reason the ANFIS outputs are rounded, and determined the class labels. But, sometimes, ANFIS can give 0 or 4 class labels. These situations are not accepted. As a result ANFIS is not suitable for classification problems. In this study, I prepared different adaptive neuro-fuzzy classifiers. In the all programs, which are given below, I used the k-means algorithm to initialize the fuzzy rules. For that reason, the user should give the number of cluster for each class. Also, Gaussian membership function is only used for fuzzy set descriptions, because of its simple derivative expressions The first of them is scg_nfclass.m. This classifier based on Jang’s neuro-fuzzy classifier [1]. The differences are about the rule weights and parameter optimization. The rule weights are adapted by the number of rule samples. The scaled conjugate gradient (SCG) algorithm is used to determine the optimum values of nonlinear parameters. The SCG is faster than the steepest descent and some second order derivative based methods. Also, it is suitable for large scale problems [2]. The second program is scg_nfclass_speedup.m. This classifier is similar the scg_nfclass. The difference is about parameter optimization. Although it is based on SCG algorithm, it is faster than the traditional SCG. Because, it used least squares estimation method for gradient estimation without using all training samples. The speeding up is seemed for medium and large scale problems [2]. The third program is scg_power_nfclass.m. Linguistic hedges are applied to the fuzzy sets of rules, and are adapted by SCG algorithm. By this way, some distinctive features are emphasized by power values, and some irrelevant features are damped with power values. The power effects in any feature are generally different for different classes. The using of linguistic hedges increase the recognition rates [3]. The last program is scg_power_nfclass_feature.m. In this program, the powers of fuzzy sets are used for feature selection [4]. If linguistic hedge values of classes in any feature are bigger than 0.5 and close to 1, this feature is relevant, otherwise it is irrelevant. The program creates a feature selection and a rejection criterion by using power values of features. References: [1] Sun CT, Jang JSR (1993). A neuro-fuzzy classifier and its applications. Proc. of IEEE Int. Conf. on Fuzzy Systems, San Francisco 1:94–98.Int. Conf. on Fuzzy Systems, San Francisco 1:94–98 [2] B. Cetişli, A. Barkana (2010). Speeding up the scaled conjugate gradient algorithm and its application in neuro-fuzzy classifier training. Soft Computing 14(4):365–378. [3] B. Cetişli (2010). Development of an adaptive neuro-fuzzy classifier using linguistic hedges: Part 1. Expert Systems with Applications, 37(8), pp. 6093-6101. [4] B. Cetişli (2010). The effect of linguistic hedges on feature selection: Part 2. Expert Systems with Applications, 37(8), pp 6102-6108. e-mail:bcetisli@mmf.sdu.edu.tr bcetisli@gmail.com