大数据时代的数据仓库与OLAP技术
需积分: 39 201 浏览量
更新于2024-08-23
收藏 1.48MB PPT 举报
"本资源主要探讨了数据仓库与联机分析处理技术,特别是在大数据时代背景下的发展和应用。文中提到了系统需求的变化,包括数据量的急剧增长和数据类型的多样化,以及这些变化如何影响数据仓库的设计和管理。此外,还区分了操作型处理和分析型处理的特点,并介绍了数据仓库技术、联机分析处理技术、数据挖掘技术以及大数据库时代新型数据仓库的概况。"
详细知识点说明:
1. **系统需求变化**:
- **数据量的增长**:随着信息技术的发展,数据仓库中的数据量已经从TB级别跃升至PB甚至ZB级别,且增长趋势持续。这给数据存储、管理和分析带来了巨大挑战,需要更高效的数据处理和管理技术。
- **数据类型的多样化**:现代数据仓库不仅要处理结构化数据,还需应对半结构化和非结构化数据,如文本、音频、视频、图片等。这些数据来源于各种渠道,如社交网络、在线视频、移动通信等,增加了数据处理的复杂性。
2. **操作型处理(OLTP)与分析型处理(OLAP)**:
- **OLTP**:日常事务处理,强调快速响应、数据安全性和事务吞吐量,例如售票系统、网上购物等。
- **OLAP**:侧重于数据分析,处理大量历史数据,常用于复杂的查询和分析,如金融风险预测、证券分析等。
3. **数据仓库技术**:
- **定义**:20世纪80年代为支持OLAP环境而产生的数据存储和组织技术。
- **发展**:IBM、Oracle、Teradata等传统IT厂商通过软硬件技术(如MPP并行处理、列存储)扩展数据仓库能力至PB级。同时,互联网企业如Facebook采用新技术(如MapReduce和Hive)处理大规模非结构化数据。
4. **大数据时代的数据仓库**:
- 随着大数据的兴起,数据仓库在企业决策支持中的地位越来越重要,各厂商竞相开发新型解决方案。
- Facebook的Hive系统是在Hadoop基础上构建的,专门用于分析点击流和日志文件,展示了大数据环境下数据仓库的创新应用。
5. **其他相关技术**:
- **联机分析处理技术(OLAP)**:用于复杂的数据查询和分析,如多维分析和数据切片,以支持决策支持。
- **数据挖掘技术**:从大量数据中发现模式和知识,包括分类、聚类、关联规则挖掘等。
- **大数据库时代新型数据仓库**:面对PB级以上的数据,新型数据仓库采用分布式、并行计算等技术,以处理非结构化数据和提供弹性扩展能力。
本文深入浅出地介绍了数据仓库技术及其在大数据时代的演变,以及与之相关的OLAP和数据挖掘技术,展现了数据仓库在现代信息技术中的核心地位。
2020-03-19 上传
2008-12-15 上传
2023-03-11 上传
2022-06-24 上传
2010-10-27 上传
2021-10-08 上传
2022-07-14 上传
2022-11-18 上传
2021-09-22 上传
魔屋
- 粉丝: 27
- 资源: 2万+
最新资源
- XML文档对象模型(XML DOM)研究与应用
- DWR中文教程适合初学开发人员的最佳文档
- 新版设计模式手册[C#].pdf
- Professional JavaScript For Web Developers 2nd edition
- ibatis开发指南(含基础、高级部分)
- Beginning ASP.NET E Commerce In C Sharp From Novice To Professional
- Learning the vi and Vim Editors 7th Edition Jul 2008
- 网络工程的验收与鉴定.doc
- CSS.Mastery.Advanced.Web.Standards.Solutions.pdf
- AD与DA转换的pdf详细文档
- extjs详细教程-中文版
- 電腦做什麼事 0 序章 關於電腦
- 英语学习英语的资料,不是图片,视频
- Web_Service开发指南
- c#的习题,绝对实用,不下后悔
- MCTS70-640SelfPacedTrainingKit.pdf