"近年来最小费用流问题的算法研究综述"

版权申诉
0 下载量 37 浏览量 更新于2024-02-27 收藏 1.28MB DOC 举报
In recent decades, combinatorial optimization has experienced rapid development, with network flow being one of the extensively researched problems in the field. The minimum cost flow, as the most basic network flow model, plays a crucial role in the socioeconomic development and has garnered rich research achievements. This paper primarily focuses on several minimum cost flow problems arising from production practice in recent years. Firstly, it introduces the domestic and international research dynamics regarding the minimum cost flow problem. Subsequently, it presents the algorithmic concepts, steps, and complexities of four classical algorithms for solving the minimum cost flow problem: the negative cycle algorithm, the shortest path algorithm, the primal-dual algorithm, and the network simplex algorithm. Furthermore, aiming at the minimum cost flow problem with vertex flow demands (MICF), this study proposes an improved model based on the existing production network model (MNF) and enhances the existing algorithms for MICF. Experimental results demonstrate that the performance of the improved algorithm has been enhanced, effectively overcoming the issue of the original algorithm's application in large complex networks, which often leads to massive network structures. Keywords: combinatorial optimization, network flow, minimum cost flow, flow, production network model, MICF, algorithm.
2023-12-29 上传
【资源说明】 解决最小费用流问题的迭代算法matlab实现源码+项目说明+详细注释.zip 解决最小费用流问题的迭代算法 `MinCostFlow`是根据1961年`Busacker`和`Gowan`提出的求最小费用流的迭代法编写的,编写时主要参考了`司守奎, 孙兆亮主编. 数学建模算法与应用. 第3版[M]. 国防工业出版社, 2021.`中的算法描述。由于书中的代码是使用优化工具箱求解的,故编写了此代码以使用迭代法求解。 输入 Inputs 主函数为mincost函数,输入的内容为 ``` yaml G1: 边权为网络的容量的图(digraph对象) G2: 边权为网络的单位运费的图(digraph对象) vs: 发点(字符串类型) vt: 收点(字符串类型) pl: 是否可视化最小费用最大流图(布尔类型) ``` 测试时使用了`司守奎, 孙兆亮主编. 数学建模算法与应用. 第3版[M]. 国防工业出版社, 2021.`一个示例中的数据,存储在[data.mat]文件中。使用该数据求解得到的结果与该书中使用优化工具箱求解的结果一致。 输出 Outputs 输出的结果保存在变量`G`和`fee`中,`G`为最小费用最大流图,`fee`为最小费用。 【备注】 1.项目代码均经过功能验证ok,确保稳定可靠运行。欢迎下载体验! 2.主要针对各个计算机相关专业,包括计算机科学、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师、企业员工。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。在使用过程中,如有问题或建议,请及时沟通。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈!