没有合适的资源?快使用搜索试试~ 我知道了~
首页python中常用的九种预处理方法分享
python中常用的九种预处理方法分享
181 浏览量
更新于2023-05-28
评论
收藏 54KB PDF 举报
给大家分享了python中常用的九种预处理方法,对大家学习或使用python具有一定的参考价值,有需要的朋友们可以一起来看看。
资源详情
资源评论
资源推荐

python中常用的九种预处理方法分享中常用的九种预处理方法分享
给大家分享了python中常用的九种预处理方法,对大家学习或使用python具有一定的参考价值,有需要的朋友
们可以一起来看看。
本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍;
1. 标准化(标准化(Standardization or Mean Removal and Variance Scaling)
变换后各维特征有0均值,单位方差。也叫z-score规范化(零均值规范化)。计算方式是将特征值减去均值,除以标准差。
sklearn.preprocessing.scale(X)
一般会把train和test集放在一起做标准化,或者在train集上做标准化后,用同样的标准化器去标准化test集,此时可以用scaler
scaler = sklearn.preprocessing.StandardScaler().fit(train)
scaler.transform(train)
scaler.transform(test)
实际应用中,需要做特征标准化的常见情景:SVM
2. 最小最小-最大规范化最大规范化
最小-最大规范化对原始数据进行线性变换,变换到[0,1]区间(也可以是其他固定最小最大值的区间)
min_max_scaler = sklearn.preprocessing.MinMaxScaler()
min_max_scaler.fit_transform(X_train)
3.规范化(规范化(Normalization))
规范化是将不同变化范围的值映射到相同的固定范围,常见的是[0,1],此时也称为归一化。
将每个样本变换成unit norm。
X = [[ 1, -1, 2],[ 2, 0, 0], [ 0, 1, -1]]
sklearn.preprocessing.normalize(X, norm='l2')
得到:
array([[ 0.40, -0.40, 0.81], [ 1, 0, 0], [ 0, 0.70, -0.70]])
可以发现对于每一个样本都有,0.4^2+0.4^2+0.81^2=1,这就是L2 norm,变换后每个样本的各维特征的平方和为1。类似
地,L1 norm则是变换后每个样本的各维特征的绝对值和为1。还有max norm,则是将每个样本的各维特征除以该样本各维特
征的最大值。
在度量样本之间相似性时,如果使用的是二次型kernel,需要做Normalization
4. 特征二值化(特征二值化(Binarization))
给定阈值,将特征转换为0/1
binarizer = sklearn.preprocessing.Binarizer(threshold=1.1)
binarizer.transform(X)
5. 标签二值化(标签二值化(Label binarization))
lb = sklearn.preprocessing.LabelBinarizer()
6. 类别特征编码类别特征编码
有时候特征是类别型的,而一些算法的输入必须是数值型,此时需要对其编码。
enc = preprocessing.OneHotEncoder()
enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
enc.transform([[0, 1, 3]]).toarray() #array([[ 1., 0., 0., 1., 0., 0., 0., 0., 1.]])
上面这个例子,第一维特征有两种值0和1,用两位去编码。第二维用三位,第三维用四位。
另一种编码方式
newdf=pd.get_dummies(df,columns=["gender","title"],dummy_na=True)
7.标签编码(标签编码(Label encoding))
le = sklearn.preprocessing.LabelEncoder()


















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0