没有合适的资源?快使用搜索试试~ 我知道了~
首页宝马:深度学习在自动驾驶中的应用及部署过程.pdf
宝马:深度学习在自动驾驶中的应用及部署过程;注意此文档全为英文版。宝马自动驾驶▪于Unterschleißheim(慕尼黑)的宝马自动驾驶校区,于2017年成立▪1400名员工,包括 合作伙伴(传感器处理,数据分析,机器学习,驾驶策略,硬件架构)▪81个功能小组(包括合作伙伴),每周进行2次冲刺(LESS)▪30名博士。简介:用于AD的ML-应用程序的设计过程 ▪示范项目; 这是由宝马的AD策略驱动的 1.用于广告的细粒度车辆表示 2. AD驾驶区域的自我监督学习 3. CNN的AD优化技术
资源详情
资源评论
资源推荐

DEEP LEARNING IN THE FIELD OF AUTONOMOUS
DRIVING
AN OUTLINE OF THE DEPLOYMENT PROCESS FOR ADAS AND AD
Alexander Frickenstein, 3/17/2019

Page 2GTC 2019 - Silicon Valley| Deep Learning for Autonomous Driving at BMW | 03/20/19
AUTONOMOUS DRIVING AT BMW

Page 3GTC 2019 - Silicon Valley| Deep Learning for Autonomous Driving at BMW | 03/20/19
AUTONOMOUS DRIVING AT BMW
▪ BMW Autonomous Driving Campus in Unterschleißheim (Munich), established in 2017
▪ 1400 Employees incl. Partners (Sensor-processing, Data-Analytics, ML, Driving-Strategy, HW-Architecture)
▪ 81 Feature teams (incl. Partners), working in 2 weekly sprints (LESS)
▪ 30 PhDs
‘Raw data are good data’ -Unknown Author-
▪ BMW AD research fleet consist of 85 cars collecting 2TB/h per car
→ High resolution sensor data, like LIDAR, Camera
►Insight into three PhD-projects, which are driven by the AD strategy at BMW

Page 4GTC 2019 - Silicon Valley| Deep Learning for Autonomous Driving at BMW | 03/20/19
CONTENT
▪ Introduction: Design Process of ML-Applications for AD
▪ Exemplary projects; which are driven by the AD strategy at BMW
1. Fine-Grained Vehicle Representations for AD
2. Self-Supervised Learning of the Drivable Area of AD
3. CNN Optimization Techniques for AD

Page 5GTC 2019 - Silicon Valley| Deep Learning for Autonomous Driving at BMW | 03/20/19
DESIGN PROCESS OF ML-APPLICATIONS FOR AD
剩余31页未读,继续阅读
















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0