没有合适的资源?快使用搜索试试~ 我知道了~
首页基于Redis+MySQL+MongoDB存储架构应用
基于Redis+MySQL+MongoDB存储架构应用
1.0k 浏览量
更新于2023-03-03
评论 1
收藏 126KB PDF 举报
Redis+MySQL+MongoDB技术架构实现了本项目中大数据存储和实时云计算的需求。使用MongoDB切片的水平动态添加,可在不中断平台业务系统的同时保障扩容后的查询速度和云计算效能;依据切片键索引分片,位于各切片独立进行计算,使大数据下的实时分析成为现实。对于高频访问的数据放在了Redis中,有效地降低磁盘I/O,使业务系统响应更为敏捷,满足了高并发下应用服务的高呑吐要求。
资源详情
资源评论
资源推荐

基于基于Redis+MySQL+MongoDB存储架构应用存储架构应用
Redis+MySQL+MongoDB技术架构实现了本项目中大数据存储和实时云计算的需求。使用MongoDB切片的水
平动态添加,可在不中断平台业务系统的同时保障扩容后的查询速度和云计算效能;依据切片键索引分片,位
于各切片独立进行计算,使大数据下的实时分析成为现实。对于高频访问的数据放在了Redis中,有效地降低磁
盘I/O,使业务系统响应更为敏捷,满足了高并发下应用服务的高呑吐要求。
摘摘 要要:
关键词关键词:
基于移动位置服务的应用是根据用户所在位置提供的一种增值业务,主要通过移动定位技术获得其当前所在位置,在电子
地图和业务平台的支持下,提供位置相关的信息服务。通过互联网提供软件服务的SaaS(Software as a Service)模式具有
企业初期零投入,不需服务器、系统研发等软硬件投入等独特的优点,为广大中小企业解决前期资金投入不足的情况下开展信
息化建设,引入管理信息系统提供了一个可行的模式。
1 项目简介项目简介
基于此需求背景提出开发一种面向中小企业移动位置服务的SaaS平台,帮助所有具有外勤、外巡、外服的户外工作业务
的中小企业降低成本,将定位技术与智能手机客户端相结合,利用运营商的GSM/WCDMA等无线网络,为企业提供在外工作
人员的具体位置和行走轨迹,同时实现考勤签到、快速审批、位置标注、语音群聊、数据上报、区域预警,更好地进行地理化
分析、业绩审视,快速响应客户需求和有效管理员工,深度巩固企业在市场中主体地位和增强企业核心竞争力。
2 业务数据分析业务数据分析
移动位置服务的SaaS平台作为企业移动互联网应用,应用过程将积累大量数据。其中包括:静态信息(手机号码、注册
信息、手机型号等);位置信息(行动轨迹、速度、停留时间、地点属性);与APP关联的数据(访问行为、社交行为、交易
行为等);交互特点(报告频率、数据类型与格式等)。其数据容量和特点较传统业务有较大地变化。
2.1 数据来源分析
数据来源包括终端采集的数据和SaaS平台数据,终端数据涵盖了Android、IOS智能终端和PC端,智能终端是企业应用的
数据采集器,是企业人在业务活动中“人体器官”的延伸。同时还有部分数据源于PC端;另外系统运行过程中,会产生大量日志
数据。
(1)终端采集的数据
①轨迹数据:以包括公司id、用户id、经纬度、地址、定位时间、定位类型等信息的一个数据样本为例,默认30 s采集一
次,假如企业员工默认工作时间8小时,每个员工每天条数为2 080条,假定用户数为10 000,那么每天有2 080万条;单条数
据占用空间184 KB,10 000用户一天占用空间约为3 GB。
②常规业务数据:常规业务数据种类有考勤、工作计划、工作日志、申请、事件提醒、通知公告、销售上报等;保守预计
单条数据容量为512 KB,按每个用户每天产生15条相关业务,其数据量为7 680 KB,10 000用户一天产生数据量约为73
MB。
③即时聊天和工作微博数据:即时聊天和工作微博数据为非结构化数据,包含如下种类:语音、图片、文本、位置分享
等。保守预计单条图片语音数据量为: 100 KB,按每个用户每天产生30条,其数据量为3 000 KB,10 000用户一天产生数
据量约为28 GB。
(2)平台数据
作为服务众多企业的云平台,还有如下种类数据需要产生和管理:企业、企业组织、企业用户、用户通信录、用户通信录
个性化备注、群组名片等;平台方面的数据暂且不作考量,与普遍的企业应用基本类似。
2.2 数据特点分析
(1)移动化。与PC应用相比较,移动应用数据采集的时空变化了,智能终端不知疲倦,可以自动采集上报如位置等信
息;同时移动化使得采集数据的便捷性得到了极大提高,用手机拍照立即便可上传,相比过去的照相机采集没有空间限制也没
有链接PC上传的限制。
(2)非结构化。采集的图片语音等媒体数据非结构化,例如采集门店的货品陈列的图片数据等,工作微博分享的数据文
档化,与传统结构化、需要事务支持的数据有明显差异。
(3)平台级增量化。与以往企业级应用对应一家企业增量相比,平台级数据增量化带来的数据量巨大增加,通过上面的
分析,10 000用户每天会带来大约30 GB的数据增量。30 GB数据有些均匀地提交到平台,有些会以峰值的方式提交到平台;
考勤通常集中在上下班时段,而轨迹则均匀分布在所有上班时间。
针对以上数据分析,如何解决其大容量和非结构化数据特点面临的存储和处理的挑战?通过技术选型和前期的测试数据对
比,选用了Redis+MySQL+Mongodb架构的解决方案。

















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0