没有合适的资源?快使用搜索试试~ 我知道了~
首页论文研究-求解大规模优化问题的改进鲸鱼优化算法.pdf
论文研究-求解大规模优化问题的改进鲸鱼优化算法.pdf
需积分: 29 445 浏览量
更新于2023-05-28
评论 1
收藏 912KB PDF 举报
论文研究-求解大规模优化问题的改进鲸鱼优化算法.pdf, 提出一种基于非线性收敛因子的改进鲸鱼优化算法(简记为IWOA)用于求解大规模复杂优化问题.为算法全局搜索奠定基础,在搜索空间中利用对立学习策略进行初始化鲸鱼个体位置;设计一种随进化迭代次数非线性变化的收敛因子更新公式以协调WOA算法的探索和开发能力;对当前最优鲸鱼个体执行多样性变异操作以减少算法陷入局部最优的概率.选取15个大规模(200维、500维和1000维)标准测试函数进行数值实验,结果表明,IWOA在求解精度和收敛速度方面明显优于其他对比算法.
资源详情
资源评论
资源推荐

37
11
Vol.37, No.11
2017
11
Systems Engineering — Theory & Practice Nov., 2017
doi: 10.12011/1000-6788(2017)11-2983-12
: TP301.6
:A
1,2
,
1
,
2
,
3
,
Æ
4
(1.
,
550025; 2.
,
550025;
3.
,
410114; 4.
!
"#
,
$%
417000)
&
'
(
)*
+,-.
/01
(
23
IWOA)
456789
/
Æ
.
01:;<
=>'?
,
!
<
@A
"
B
CD
#$
EF-
%
GH/.
I
&'
(
;
JK
L-/MNOP(
Q/+)*
R
)
ST
*+
U
WOA
01+
,
VWXY
Z
;
C[\
-
.
I
&.%
]
/
Q
0
^
1*
_`01
2
a;b
-
+cd
.
3
e
15
I678
(200
4
500
4
V
1000
4
)
f
5
ghiP-
%
P
6
j
7
,
klmn
,IWOA
!
45opV)*qp
rsn
8
t
9
Cu01
.
.
/01
;
CD
#$
EF
;
(
)*
;
678
/
Æ
;
]
/
Q
0
Improved whale optimization algorithm for large scale
optimization problems
LONG Wen
1,2
, CAI Shaohong
1
, JIAO Jianjun
2
, TANG Mingzhu
3
,WUTiebin
4
(1. Key Laboratory of Economics System Simulation, Guizhou Universit y of Finance and Economics, Guiy ang 550025, China;
2. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China; 3. School of
Energy and Power Engineering, Changsha University of Science and Engineering, Changsha 410114, China; 4. School of
Energy and Electrical Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China)
Abstract An improved whale optimization algorithm (WOA) based on nonlinear convergence factor,
named IWOA, is proposed for solving large scale complicated optimization problems. In the proposed
algorithm, opposition-based learning strategy is used to initial the whale individuals’ position in the search
space, which strengthened the diversity of individuals in the global searching process. A novel nonlinearly
update equation of convergence factor is designed to coordinate the abilities of exploration and exploitation.
It then disturbed the current optimal individual by diversity mutation operator in the process of the search
so as to avoid the possibility of falling into local optimum. Simulation experiments were conducted on the
15 large scale (200, 500, and 1000 dimension) conventional test functions. The experimental results show
that the proposed IWOA has better performance in solution precision and convergence rate than other
comparison methods.
Keywords whale optimization algorithm; opposition-based learning strategy; nonlinear convergence fac-
tor; large scale optimization problem; diversity mutation
: 2016-09-01
v
:
(1977–),
,
,
,
,
:
, E-mail: lw227@mail.gufe.edu.cn.
Æ
:
(61463009, 61403046);
(
[2016]1022);
(2016SWBZD13);
(2016JJ3079)
Foundation item: National Natural Science Foundation of China (61463009, 61403046); Science and Technology Foundation
of Guizhou Province ([2016]1022); Joint Foundation of Guizhou University of Finance and Economics and Ministry of Commerce
(2016SWBZD13); Natural Science Foundation of Hunan Province (2016JJ3079)
w
:
,
,
,
.
Æ
[J].
, 2017, 37(11):
2983–2994.
: Long W, Cai S H, Jiao J J, et al. Improved whale optimization algorithm for large scale optimization problems[J].
Systems Engineering — Theory & Practice, 2017, 37(11): 2983–2994.

2984
37
1
!
,
.
100
.
!
,
"
#
,
$
%
,
“
”
[1]
.
&
'
!
,
"
(
#
$
)*
%
&
!
,
(
'
+
!
[2−3]
.Rao
[4]
(
,
(teaching-learning-
based optimization, TLBO)
"
-
,
#
$
)
.
/0
%
!
TLBO
!
&
!
.
"
"
!
*
,Sayed
[5]
(
&
*!'
!
.
"
"#
1
$
(particle swarm optimization, PSO)
!
#$
+
'
,
!
,Tang
[6]
(
&
%
&
&
)2
'
3
4
%
PSO
"
-
.
"
"&
5
(
*
(differential evolution, DE)
!
"
'
-
)
(
)
,Ali
[7]
(
)
5
+
*
(
+
*
,
DE
.
"
"+
.
!
,
6
7
/
[8]
8
Æ
"
&
9
,
-
:
-
"
0
.
(bat algorithm, BA).
/
)
(whale optimization algorithm, WOA)
*
Mirjalili
)
Lewis
[9]
2016
0
(
+
:
,
1
!
.
"
2
;
#
,
/
$
1
"
2
,
3
/
)
/
-
%
0
)<=
1
.
3
.WOA
>
1
#
2
/
3
&
4
'
4
&
!
,
:
4
,
0
5
(
!
!
5
)
0
.
.
5
1
!
2
PSO
)
3
(gravitational
search algorithm, GSA)
[9]
.
6
?
WOA
7
)
6
6
(
7
@
,
8
7
*+
.
4
(
4
100
)
5
.
3
8
Æ%6
9:
A
WOA
!
.
&
;
,
<
%
=
)
A
WOA
!
.
,
7
/0
%
!
WOA
!
&"
.
2
"#$%&
-
/
)
5
9
"
:
;
5
>
;
?
.
,
7
0/
)
-
@
30
8
)
180
A
.
.
/
)
B
&
0
<
"
,
B
99
8
:
<
:
[10]
,
9
1
=>
.
9
1
0
<
"
*
"
;
CD
C
:
:
5
<
;
)
?
<
E
.
:
5
<
;
D
C
,
/
)
@
=
12
8
>
$A
,
(
B
-
C
1
.
<
;?
7
99
:
5
@
D
;
?
<
ED
C/
=
E
F
<
E
AB
>
D
A
4
)
0
G
<
E
.
99
8
0
<
"
CD
?
F
H
4
@
%6
[10].
'
1
()
/
**+,-./
&
5F
/
)
99
8
:
<
"
, Mirjalili
)
Lewis
E
G
,
B
/
)
(WOA)
[9]
.
WOA
,
I
/
)
"
N,
"
"
d
,
E
i
*
/
)
E
d
"
F
'
-
%
>
"
X
i
=(X
1
i
,X
2
i
,,···,X
D
i
), i =1, 2, ···,N,
1
.
F
'
.
"
!
.
/
)
J
H
F
1
.
F
'
/
-
1
A
.
*
!
8
.
"
"
F
'
B
I
K
=
7
0
H
,
WOA
,
I
G
8
F
'
"
1
.
,
7J
/
)
C
)
:
C
/
-
,
C
%
(1)
L
F
'
:
X(t +1)=X
p
(t) − A ·|C · X
p
(t) − X(t)| (1)
7
, t
"
G
8
H
, X
p
=(X
1
p
,X
2
p
, ···,X
D
p
)
"
1
.F
'
, A ·|C · X
p
(t) − X(t)|
"
/
-
I
, A
)
C
J

11
,
:
Æ
2985
G"
:
A =2a · rand
1
− a (2)
C =2· rand
2
(3)
7
, rand
1
)
rand
2
%
>
[0, 1]
"
3
, a
K
"
0
.
&
,
H
#
2
M
4
@
0,
B
a =2− 2t/t
max
(4)
7
, t
"
G
8
H
, t
max
"
H
.
"
"
5
?
F
/
)
99
8
0
<
"
,
WOA
,
";
L
K
:
,
B
0L
/
-
3
)
<
;
L
F
'
.
0L
/
-
3
3
%
(2)
)
(4)
0
.
&
a
M
4
.
<
;
L
F
'
:
,
2/
)
<
;
%
1
?
0
G
1
.
,
7
+
>
:
X(t +1)=
D
· e
bl
· cos(2πl)+X
p
(t)(5)
7
, D
= |X
p
(t) − X(t)|
%
>
E
i
*
/
)
)
1
.
2
"
DE
, b
"H
J.
<
;?
3
M
, l
"
[−1, 1]
2
"
3
.
4
F
,
/1
5
I
/
)
1
.
0LM
6
-@
@
D
,
K
J
<
;?
GH
.
"
"2
N
"
,
,
K
7
0L
/
-
3
)
<
;F
'
L
O
I
L
K
,
)
"
0.5
[9]
.
N
"99
8
0
<
"
,
/
)M
-
3
N
8
<
.
.
N5
,
/
)
C
P
J
O;
F
'
3
,
7
+
-
%
>
"
:
X(t +1)=X
rand
(t) − A ·|C · X
rand
(t) − X(t)| (6)
%
X
rand
"
G
8
3
K
6
/
)
C
F
'
:
%
.
9
5=F
,
&
<
WOA
K
9
9
2
=>
.
t=1.
[0,1]
p
p<0.5
|A|< 1
(1)(6)(5)
(4) a ,
(2) (3) A C
'
2
Æ
:
WOA
0
;
1
<
'
3
=
2"#$%
(IGWO)
&
-
3.1
34
>
567
?
x
8
@
9:
Haupt
,
.
&
O
,
P
B
QR
OP
!
5
)
0
.
.
[11]
.
,
Q
(Q
P
B
"
WOA
"
QJ
&
R
.
8
,
.
"
!
B
I
剩余11页未读,继续阅读








安全验证
文档复制为VIP权益,开通VIP直接复制

评论0