没有合适的资源?快使用搜索试试~ 我知道了~
首页Pytorch中膨胀卷积的用法详解
资源详情
资源评论
资源推荐

Pytorch中膨胀卷积的用法详解中膨胀卷积的用法详解
今天小编就为大家分享一篇Pytorch中膨胀卷积的用法详解,具有很好的参考价值,希望对大家有所帮助。一起
跟随小编过来看看吧
卷积和膨胀卷积卷积和膨胀卷积
在深度学习中,我们会碰到卷积的概念,我们知道卷积简单来理解就是累乘和累加,普通的卷积我们在此不做赘述,大家可以
翻看相关书籍很好的理解。
最近在做项目过程中,碰到Pytorch中使用膨胀卷积的情况,想要的输入输出是图像经过四层膨胀卷积后图像的宽高尺寸不发
生变化。
开始我的思路是padding='SAME'结合strides=1来实现输入输出尺寸不变,试列好多次还是有问题,报了张量错误的提示,想
了好久也没找到解决方法,上网搜了下,有些人的博客说经过膨胀卷积之后图像的尺寸不发生变化,有些人又说发生变化,甚
至还给出了公式,按着他们的方法修改后还是有问题,报的错误还是没有变。一时不知道怎样解决,网上关于膨胀卷积输出尺
寸的大小相关的知识也很少。
终于......,经过自己的研究,发现了问题所在。好啦!我们先从膨胀卷积的概念开始。
1、膨胀卷积的概念、膨胀卷积的概念
Dilated Convolutions,翻译为扩张卷积或空洞卷积。扩张卷积与普通的卷积相比,除了卷积核的大小以外,还有一个扩张率
(dilation rate)参数,主要用来表示扩张的大小。扩张卷积与普通卷积的相同点在于,卷积核的大小是一样的,在神经网络中即
参数数量不变,区别在于扩张卷积具有更大的感受野。感受野是卷积核在图像上看到的大小,例如5x5的卷积核的感受野大小
为25。
2、示意图、示意图
a.普通卷积,dilation=1,感受野为3x3=9
b.膨胀卷积,dilation=2,感受野为7x7=49
c.膨胀卷积,dilation=4,感受野为16x16 = 256
3、感受野的概念、感受野的概念
在卷积神经网络中,感受野的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域
大小


















weixin_38645133
- 粉丝: 6
- 资源: 966
上传资源 快速赚钱
我的内容管理 收起
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

会员权益专享
安全验证
文档复制为VIP权益,开通VIP直接复制

评论0