没有合适的资源?快使用搜索试试~ 我知道了~
首页resnet_18_structure.pdf
resnet_18_structure.pdf
需积分: 48 2.2k 浏览量
更新于2023-05-21
评论 1
收藏 31KB PDF 举报
resnet 18 网络结构(摘要需要大于50个字节,所以请自动忽略这个括号。。。)
资源详情
资源评论
资源推荐

ThAddmmBackward
ExpandBackward
fc.bias
(100)
ViewBackward
AvgPool2DBackward
ThresholdBackward1
ThAddBackward
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThAddBackward
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThnnConv2DBackward
ThAddBackward
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThAddBackward
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThnnConv2DBackward
ThAddBackward
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThAddBackward
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThnnConv2DBackward
ThAddBackward
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThAddBackward
ThnnBatchNormBackward
ThnnConv2DBackward
ThresholdBackward1
ThnnBatchNormBackward
ThnnConv2DBackward
MaxPool2DWithIndicesBackward
ThresholdBackward1
ThnnBatchNormBackward
ThnnConv2DBackward
x
(10, 3, 224, 224)
conv1.weight
(64, 3, 7, 7)
bn1.weight
(64)
bn1.bias
(64)
layer1.0.conv1.weight
(64, 64, 3, 3)
layer1.0.bn1.weight
(64)
layer1.0.bn1.bias
(64)
layer1.0.conv2.weight
(64, 64, 3, 3)
layer1.0.bn2.weight
(64)
layer1.0.bn2.bias
(64)
layer1.1.conv1.weight
(64, 64, 3, 3)
layer1.1.bn1.weight
(64)
layer1.1.bn1.bias
(64)
layer1.1.conv2.weight
(64, 64, 3, 3)
layer1.1.bn2.weight
(64)
layer1.1.bn2.bias
(64)
layer2.0.conv1.weight
(128, 64, 3, 3)
layer2.0.bn1.weight
(128)
layer2.0.bn1.bias
(128)
layer2.0.conv2.weight
(128, 128, 3, 3)
layer2.0.bn2.weight
(128)
layer2.0.bn2.bias
(128)
ThnnBatchNormBackward
layer2.0.downsample.0.weight
(128, 64, 1, 1)
layer2.0.downsample.1.weight
(128)
layer2.0.downsample.1.bias
(128)
layer2.1.conv1.weight
(128, 128, 3, 3)
layer2.1.bn1.weight
(128)
layer2.1.bn1.bias
(128)
layer2.1.conv2.weight
(128, 128, 3, 3)
layer2.1.bn2.weight
(128)
layer2.1.bn2.bias
(128)
layer3.0.conv1.weight
(256, 128, 3, 3)
layer3.0.bn1.weight
(256)
layer3.0.bn1.bias
(256)
layer3.0.conv2.weight
(256, 256, 3, 3)
layer3.0.bn2.weight
(256)
layer3.0.bn2.bias
(256)
ThnnBatchNormBackward
layer3.0.downsample.0.weight
(256, 128, 1, 1)
layer3.0.downsample.1.weight
(256)
layer3.0.downsample.1.bias
(256)
layer3.1.conv1.weight
(256, 256, 3, 3)
layer3.1.bn1.weight
(256)
layer3.1.bn1.bias
(256)
layer3.1.conv2.weight
(256, 256, 3, 3)
layer3.1.bn2.weight
(256)
layer3.1.bn2.bias
(256)
layer4.0.conv1.weight
(512, 256, 3, 3)
layer4.0.bn1.weight
(512)
layer4.0.bn1.bias
(512)
layer4.0.conv2.weight
(512, 512, 3, 3)
layer4.0.bn2.weight
(512)
layer4.0.bn2.bias
(512)
ThnnBatchNormBackward
layer4.0.downsample.0.weight
(512, 256, 1, 1)
layer4.0.downsample.1.weight
(512)
layer4.0.downsample.1.bias
(512)
layer4.1.conv1.weight
(512, 512, 3, 3)
layer4.1.bn1.weight
(512)
layer4.1.bn1.bias
(512)
layer4.1.conv2.weight
(512, 512, 3, 3)
layer4.1.bn2.weight
(512)
layer4.1.bn2.bias
(512)
TBackward
fc.weight
(100, 512)


















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0