没有合适的资源?快使用搜索试试~ 我知道了~
首页Fundamentals of Deep Learning 无水印pdf
Fundamentals of Deep Learning 无水印pdf

Fundamentals of Deep Learning 英文无水印pdf pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
资源详情
资源评论
资源推荐

Fundamentals of
Deep
Learning
DESIGNING NEXT-GENERATION
MACHINE INTELLIGENCE ALGORITHMS
Nikhil Buduma
with contributions by Nicholas Locascio


Nikhil Buduma
Fundamentals of Deep Learning
Designing Next-Generation Machine
Intelligence Algorithms
with contributions by Nicholas Locascio
Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-92561-4
[TI]
Fundamentals of Deep Learning
by Nikhil Buduma and Nicholas Lacascio
Copyright © 2017 Nikhil Buduma. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.
Editors: Mike Loukides and Shannon Cutt
Production Editor: Shiny Kalapurakkel
Copyeditor: Sonia Saruba
Proofreader: Amanda Kersey
Indexer: Wendy Catalano
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest
June 2017:
First Edition
Revision History for the First Edition
2017-05-25: First Release
The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Fundamentals of Deep Learning, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Table of Contents
Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1. The Neural Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Building Intelligent Machines 1
The Limits of Traditional Computer Programs 2
The Mechanics of Machine Learning 3
The Neuron 7
Expressing Linear Perceptrons as Neurons 8
Feed-Forward Neural Networks 9
Linear Neurons and Their Limitations 12
Sigmoid, Tanh, and ReLU Neurons 13
Softmax Output Layers 15
Looking Forward 15
2. Training Feed-Forward Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
The Fast-Food Problem 17
Gradient Descent 19
The Delta Rule and Learning Rates 21
Gradient Descent with Sigmoidal Neurons 22
The Backpropagation Algorithm 23
Stochastic and Minibatch Gradient Descent 25
Test Sets, Validation Sets, and Overfitting 27
Preventing Overfitting in Deep Neural Networks 34
Summary 37
3. Implementing Neural Networks in TensorFlow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
What Is TensorFlow? 39
How Does TensorFlow Compare to Alternatives? 40
iii
剩余297页未读,继续阅读


















yinkaisheng-nj
- 粉丝: 762
- 资源: 6953
上传资源 快速赚钱
我的内容管理 收起
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

会员权益专享
最新资源
- 基于web的商场管理系统的与实现.doc
- 基于新浪微博开放平台的Android终端应用设计毕业论文(1).docx
- 软件结构设计PPT课件.ppt
- 5_Spark系统1
- TSPS用户使用说明书 1
- 3Java SE(下).doc
- ★★★★广发证券-金融工程-衍生产品专题一类波动收敛突变模式的趋势跟随策略-安宁宁1
- 计算机Java核心编程
- 发电厂热控检修基础设备培训教材
- 方向领域综合设计报告-孙淼-20182119581
- 实验报告1
- 基于Java和MySQL的虚拟现实动态场景构建方法.pptx
- viewUIAdminPro文件详解
- 互联网与传统媒体融合趋势研究.pptx
- 基于粒子群优化算法的车间布局设计.pptx
- java学习资料
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

评论2