没有合适的资源?快使用搜索试试~ 我知道了~
首页ANSYS_2020_Fluent_Theory_Guide
资源详情
资源评论
资源推荐

ANSYS Fluent Theory Guide
Release 2020 R1ANSYS, Inc.
January 2020Southpointe
2600 ANSYS Drive
Canonsburg, PA 15317
ANSYS, Inc. and
ANSYS Europe,
ansysinfo@ansys.com
Ltd. are UL
http://www.ansys.com
registered ISO
(T) 724-746-3304
(F) 724-514-9494
9001: 2015
companies.

Copyright and Trademark Information
© 2020 ANSYS, Inc. Unauthorized use, distribution or duplication is prohibited.
ANSYS, ANSYS Workbench, AUTODYN, CFX, FLUENT and any and all ANSYS, Inc. brand, product, service and feature
names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries located in the
United States or other countries. ICEM CFD is a trademark used by ANSYS, Inc. under license. CFX is a trademark
of Sony Corporation in Japan. All other brand, product, service and feature names or trademarks are the property
of their respective owners. FLEXlm and FLEXnet are trademarks of Flexera Software LLC.
Disclaimer Notice
THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFID-
ENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software products
and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement
that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting
laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products
and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions
of that software license agreement.
ANSYS, Inc. and ANSYS Europe, Ltd. are UL registered ISO 9001: 2015 companies.
U.S. Government Rights
For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use,
duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc.
software license agreement and FAR 12.212 (for non-DOD licenses).
Third-Party Software
See the legal information in the product help files for the complete Legal Notice for ANSYS proprietary software
and third-party software. If you are unable to access the Legal Notice, contact ANSYS, Inc.
Published in the U.S.A.

Table of Contents
Using This Manual ................................................................................................................................... xxxix
1.The Contents of This Manual .......................................................................................................... xxxix
2.Typographical Conventions ................................................................................................................. xl
3. Mathematical Conventions ............................................................................................................... xliii
1. Basic Fluid Flow ....................................................................................................................................... 1
1.1. Overview of Physical Models in ANSYS Fluent .................................................................................... 1
1.2. Continuity and Momentum Equations ............................................................................................... 2
1.2.1.The Mass Conservation Equation .............................................................................................. 2
1.2.2. Momentum Conservation Equations ........................................................................................ 3
1.3. User-Defined Scalar (UDS) Transport Equations .................................................................................. 4
1.3.1. Single Phase Flow .................................................................................................................... 4
1.3.2. Multiphase Flow ....................................................................................................................... 5
1.4. Periodic Flows .................................................................................................................................. 6
1.4.1. Overview ................................................................................................................................. 6
1.4.2. Limitations ............................................................................................................................... 7
1.4.3. Physics of Periodic Flows .......................................................................................................... 7
1.4.3.1. Definition of the Periodic Velocity .................................................................................... 7
1.4.3.2. Definition of the Streamwise-Periodic Pressure ................................................................ 8
1.5. Swirling and Rotating Flows .............................................................................................................. 8
1.5.1. Overview of Swirling and Rotating Flows .................................................................................. 9
1.5.1.1. Axisymmetric Flows with Swirl or Rotation ....................................................................... 9
1.5.1.1.1. Momentum Conservation Equation for Swirl Velocity ............................................. 10
1.5.1.2.Three-Dimensional Swirling Flows .................................................................................. 10
1.5.1.3. Flows Requiring a Moving Reference Frame ................................................................... 11
1.5.2. Physics of Swirling and Rotating Flows .................................................................................... 11
1.6. Compressible Flows ........................................................................................................................ 12
1.6.1. When to Use the Compressible Flow Model ............................................................................ 13
1.6.2. Physics of Compressible Flows ................................................................................................ 14
1.6.2.1. Basic Equations for Compressible Flows ......................................................................... 14
1.6.2.2.The Compressible Form of the Gas Law .......................................................................... 15
1.7. Inviscid Flows ................................................................................................................................. 15
1.7.1. Euler Equations ...................................................................................................................... 15
1.7.1.1.The Mass Conservation Equation .................................................................................... 16
1.7.1.2. Momentum Conservation Equations .............................................................................. 16
1.7.1.3. Energy Conservation Equation ....................................................................................... 16
2. Flows with Moving Reference Frames ................................................................................................... 17
2.1. Introduction ................................................................................................................................... 17
2.2. Flow in a Moving Reference Frame .................................................................................................. 19
2.2.1. Equations for a Moving Reference Frame ................................................................................ 19
2.2.1.1. Relative Velocity Formulation ......................................................................................... 20
2.2.1.2. Absolute Velocity Formulation ....................................................................................... 21
2.2.1.3. Relative Specification of the Reference Frame Motion ..................................................... 21
2.3. Flow in Multiple Reference Frames .................................................................................................. 22
2.3.1.The Multiple Reference Frame Model ...................................................................................... 22
2.3.1.1. Overview ....................................................................................................................... 22
2.3.1.2. Examples ....................................................................................................................... 23
2.3.1.3. The MRF Interface Formulation ...................................................................................... 24
2.3.1.3.1. Interface Treatment: Relative Velocity Formulation ................................................. 24
2.3.1.3.2. Interface Treatment: Absolute Velocity Formulation ............................................... 25
2.3.2.The Mixing Plane Model ......................................................................................................... 25
iii
Release 2020 R1 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.

2.3.2.1. Overview ....................................................................................................................... 26
2.3.2.2. Rotor and Stator Domains .............................................................................................. 26
2.3.2.3. The Mixing Plane Concept ............................................................................................. 27
2.3.2.4. Choosing an Averaging Method ..................................................................................... 28
2.3.2.4.1. Area Averaging ..................................................................................................... 28
2.3.2.4.2. Mass Averaging .................................................................................................... 29
2.3.2.4.3. Mixed-Out Averaging ............................................................................................ 29
2.3.2.5. Mixing Plane Algorithm of ANSYS Fluent ........................................................................ 29
2.3.2.6. Mass Conservation ........................................................................................................ 30
2.3.2.7. Swirl Conservation ......................................................................................................... 30
2.3.2.8. Total Enthalpy Conservation .......................................................................................... 31
3. Flows Using Sliding and Dynamic Meshes ............................................................................................ 33
3.1. Introduction ................................................................................................................................... 33
3.2. Dynamic Mesh Theory .................................................................................................................... 35
3.2.1. Conservation Equations ......................................................................................................... 36
3.2.2. Six DOF Solver Theory ............................................................................................................ 37
3.3. Sliding Mesh Theory ....................................................................................................................... 38
4.Turbulence ............................................................................................................................................. 39
4.1. Underlying Principles of Turbulence Modeling ................................................................................. 39
4.1.1. Reynolds (Ensemble) Averaging .............................................................................................. 40
4.1.2. Filtered Navier-Stokes Equations ............................................................................................. 40
4.1.3. Hybrid RANS-LES Formulations ............................................................................................... 41
4.1.4. Boussinesq Approach vs. Reynolds Stress Transport Models ..................................................... 42
4.2. Spalart-Allmaras Model ................................................................................................................... 42
4.2.1. Overview ............................................................................................................................... 43
4.2.2.Transport Equation for the Spalart-Allmaras Model ................................................................. 43
4.2.3. Modeling the Turbulent Viscosity ............................................................................................ 43
4.2.4. Modeling the Turbulent Production ........................................................................................ 44
4.2.5. Modeling the Turbulent Destruction ....................................................................................... 45
4.2.6. Model Constants .................................................................................................................... 45
4.2.7. Wall Boundary Conditions ...................................................................................................... 45
4.2.7.1.Treatment of the Spalart-Allmaras Model for Icing Simulations ....................................... 46
4.2.8. Convective Heat and Mass Transfer Modeling .......................................................................... 46
4.3. Standard, RNG, and Realizable k-ε Models ........................................................................................ 47
4.3.1. Standard k-ε Model ................................................................................................................ 47
4.3.1.1. Overview ....................................................................................................................... 47
4.3.1.2. Transport Equations for the Standard k-ε Model ............................................................. 48
4.3.1.3. Modeling the Turbulent Viscosity ................................................................................... 48
4.3.1.4. Model Constants ........................................................................................................... 48
4.3.2. RNG k-ε Model ....................................................................................................................... 49
4.3.2.1. Overview ....................................................................................................................... 49
4.3.2.2. Transport Equations for the RNG k-ε Model ..................................................................... 49
4.3.2.3. Modeling the Effective Viscosity ..................................................................................... 49
4.3.2.4. RNG Swirl Modification .................................................................................................. 50
4.3.2.5. Calculating the Inverse Effective Prandtl Numbers .......................................................... 50
4.3.2.6. The R-ε Term in the ε Equation ........................................................................................ 51
4.3.2.7. Model Constants ........................................................................................................... 51
4.3.3. Realizable k-ε Model ............................................................................................................... 51
4.3.3.1. Overview ....................................................................................................................... 51
4.3.3.2. Transport Equations for the Realizable k-ε Model ............................................................ 53
4.3.3.3. Modeling the Turbulent Viscosity ................................................................................... 54
4.3.3.4. Model Constants ........................................................................................................... 54
Release 2020 R1 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.iv
Theory Guide

4.3.4. Modeling Turbulent Production in the k-ε Models ................................................................... 55
4.3.5. Effects of Buoyancy on Turbulence in the k-ε Models ............................................................... 55
4.3.6. Effects of Compressibility on Turbulence in the k-ε Models ...................................................... 56
4.3.7. Convective Heat and Mass Transfer Modeling in the k-ε Models ............................................... 56
4.4. Standard, BSL, and SST k-ω Models ................................................................................................... 58
4.4.1. Standard k-ω Model ............................................................................................................... 58
4.4.1.1. Overview ....................................................................................................................... 58
4.4.1.2. Transport Equations for the Standard k-ω Model ............................................................. 59
4.4.1.3. Modeling the Effective Diffusivity ................................................................................... 59
4.4.1.3.1. Low-Reynolds Number Correction ......................................................................... 59
4.4.1.4. Modeling the Turbulence Production ............................................................................. 60
4.4.1.4.1. Production of k ..................................................................................................... 60
4.4.1.4.2. Production of ω ..................................................................................................... 60
4.4.1.5. Modeling the Turbulence Dissipation ............................................................................. 60
4.4.1.5.1. Dissipation of k ..................................................................................................... 60
4.4.1.5.2. Dissipation of ω ..................................................................................................... 61
4.4.1.5.3. Compressibility Effects .......................................................................................... 61
4.4.1.6. Model Constants ........................................................................................................... 62
4.4.2. Baseline (BSL) k-ω Model ........................................................................................................ 62
4.4.2.1. Overview ....................................................................................................................... 62
4.4.2.2. Transport Equations for the BSL k-ω Model ..................................................................... 62
4.4.2.3. Modeling the Effective Diffusivity ................................................................................... 63
4.4.2.4. Modeling the Turbulence Production ............................................................................. 63
4.4.2.4.1. Production of k ..................................................................................................... 63
4.4.2.4.2. Production of ω ..................................................................................................... 63
4.4.2.5. Modeling the Turbulence Dissipation ............................................................................. 64
4.4.2.5.1. Dissipation of k ..................................................................................................... 64
4.4.2.5.2. Dissipation of ω ..................................................................................................... 64
4.4.2.6. Cross-Diffusion Modification .......................................................................................... 64
4.4.2.7. Model Constants ........................................................................................................... 64
4.4.3. Shear-Stress Transport (SST) k-ω Model ................................................................................... 65
4.4.3.1. Overview ....................................................................................................................... 65
4.4.3.2. Modeling the Turbulent Viscosity ................................................................................... 65
4.4.3.3. Model Constants ........................................................................................................... 65
4.4.3.4.Treatment of the SST Model for Icing Simulations ........................................................... 65
4.4.4. Effects of Buoyancy on Turbulence in the k-ω Models .............................................................. 66
4.4.5.Turbulence Damping .............................................................................................................. 67
4.4.6. Wall Boundary Conditions ...................................................................................................... 68
4.5. Generalized k-ω (GEKO) Model ........................................................................................................ 68
4.5.1. Model Formulation ................................................................................................................. 69
4.5.2. Limitations ............................................................................................................................. 71
4.6. k-kl-ω Transition Model ................................................................................................................... 71
4.6.1. Overview ............................................................................................................................... 71
4.6.2. Transport Equations for the k-kl-ω Model ................................................................................ 71
4.6.2.1. Model Constants ........................................................................................................... 74
4.7.Transition SST Model ....................................................................................................................... 74
4.7.1. Overview ............................................................................................................................... 75
4.7.2.Transport Equations for the Transition SST Model .................................................................... 75
4.7.2.1. Separation-Induced Transition Correction ...................................................................... 77
4.7.2.2. Coupling the Transition Model and SST Transport Equations ........................................... 78
4.7.2.3.Transition SST and Rough Walls ...................................................................................... 78
4.7.3. Mesh Requirements ............................................................................................................... 79
v
Release 2020 R1 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.
Theory Guide
剩余1025页未读,继续阅读













安全验证
文档复制为VIP权益,开通VIP直接复制

评论0