没有合适的资源?快使用搜索试试~ 我知道了~
首页Pytorch自己加载单通道图片用作数据集训练的实例
资源详情
资源评论
资源推荐

Pytorch自己加载单通道图片用作数据集训练的实例自己加载单通道图片用作数据集训练的实例
今天小编就为大家分享一篇Pytorch自己加载单通道图片用作数据集训练的实例,具有很好的参考价值,希望对
大家有所帮助。一起跟随小编过来看看吧
pytorch 在torchvision包里面有很多的的打包好的数据集,例如minist,Imagenet-12,CIFAR10 和CIFAR100。在torchvision的
dataset包里面,用的时候直接调用就行了。具体的调用格式可以去看文档(目前好像只有英文的)。网上也有很多源代码。
不过,当我们想利用自己制作的数据集来训练网络模型时,就要有自己的方法了。pytorch在torchvision.dataset包里面封装过
一个函数ImageFolder()。这个函数功能很强大,只要你直接将数据集路径保存为例如“train/1/1.jpg ,rain/1/2.jpg …… ”就可
以根据根目录“./train”将数据集装载了。
dataset.ImageFolder(root="datapath", transfroms.ToTensor())
但是后来我发现一个问题,就是这个函数加载出来的图像矩阵都是三通道的,并且没有什么参数调用可以让其变为单通道。如
果我们要用到单通道数据集(灰度图)的话,比如自己加载Lenet-5模型的数据集,就只能自己写numpy数组再转为pytorch的
Tensor()张量了。
接下来是我做的过程:
首先,还是要用到opencv,用灰度图打开一张图片,省事。
#读取图片 这里是灰度图
for item in all_path:
img = cv2.imread(item[1],0)
img = cv2.resize(img,(28,28))
arr = np.asarray(img,dtype="float32")
data_x[i ,:,:,:] = arr
i+=1
data_y.append(int(item[0]))
data_x = data_x / 255
data_y = np.asarray(data_y)
其次,pytorch有自己的numpy转Tensor函数,直接转就行了。
data_x = torch.from_numpy(data_x)
data_y = torch.from_numpy(data_y)
下一步利用torch.util和torchvision里面的dataLoader函数,就能直接得到和torchvision.dataset里面封装好的包相同的数据集样
本了
dataset = dataf.TensorDataset(data_x,data_y)
loader = dataf.DataLoader(dataset, batch_size=batchsize, shuffle=True)
最后就是自己建网络设计参数训练了,这部分和文档以及github中的差不多,就不赘述了。
下面是整个程序的源代码,我利用的还是上次的车标识别的数据集,一共分四类,用的是2层卷积核两层全连接。
源代码:
# coding=utf-8
import os
import cv2
import numpy as np
import random
import torch
import torch.nn as nn
import torch.utils.data as dataf
from torch.autograd import Variable
import torch.nn.functional as F
import torch.optim as optim
#训练参数
cuda = False
train_epoch = 20
train_lr = 0.01
train_momentum = 0.5
batchsize = 5
#测试训练集路径
test_path = "/home/test/"
train_path = "/home/train/"

















weixin_38663036
- 粉丝: 4
- 资源: 930
上传资源 快速赚钱
我的内容管理 收起
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

会员权益专享
安全验证
文档复制为VIP权益,开通VIP直接复制

评论0