C++求所有顶点之间的最短路径(用求所有顶点之间的最短路径(用Dijkstra算法)算法)
主要为大家详细介绍了C++用Dijkstra算法求所有顶点之间的最短路径,文中示例代码介绍的非常详细,具有一
定的参考价值,感兴趣的小伙伴们可以参考一下
本文实例为大家分享了C++求所有顶点之间最短路径的具体代码,供大家参考,具体内容如下
一、思路:一、思路: 不能出现负权值的边不能出现负权值的边
(1)轮流以每一个顶点为源点,重复执行Dijkstra算法n次,就可以求得每一对顶点之间的最短路径及最短路径长度,总的执
行时间为O(n的3次方)
(2)另一种方法:用Floyd算法,总的执行时间为O(n的3次方)(另一文章会写)
二、实现程序:二、实现程序:
1.Graph.h:有向图
#ifndef Graph_h
#define Graph_h
#include <iostream>
using namespace std;
const int DefaultVertices = 30;
template <class T, class E>
struct Edge { // 边结点的定义
int dest; // 边的另一顶点位置
E cost; // 表上的权值
Edge<T, E> *link; // 下一条边链指针
};
template <class T, class E>
struct Vertex { // 顶点的定义
T data; // 顶点的名字
Edge<T, E> *adj; // 边链表的头指针
};
template <class T, class E>
class Graphlnk {
public:
const E maxValue = 100000; // 代表无穷大的值(=∞)
Graphlnk(int sz=DefaultVertices); // 构造函数
~Graphlnk(); // 析构函数
void inputGraph(); // 建立邻接表表示的图
void outputGraph(); // 输出图中的所有顶点和边信息
T getValue(int i); // 取位置为i的顶点中的值
E getWeight(int v1, int v2); // 返回边(v1, v2)上的权值
bool insertVertex(const T& vertex); // 插入顶点
bool insertEdge(int v1, int v2, E weight); // 插入边
bool removeVertex(int v); // 删除顶点
bool removeEdge(int v1, int v2); // 删除边
int getFirstNeighbor(int v); // 取顶点v的第一个邻接顶点
int getNextNeighbor(int v,int w); // 取顶点v的邻接顶点w的下一邻接顶点
int getVertexPos(const T vertex); // 给出顶点vertex在图中的位置
int numberOfVertices(); // 当前顶点数
private:
int maxVertices; // 图中最大的顶点数
int numEdges; // 当前边数
int numVertices; // 当前顶点数
Vertex<T, E> * nodeTable; // 顶点表(各边链表的头结点)
};
// 构造函数:建立一个空的邻接表
评论0