没有合适的资源?快使用搜索试试~ 我知道了~
首页RTP/RTCP协议文档3551
资源详情
资源评论
资源推荐

Network Working Group H. Schulzrinne
Request for Comments: 3551 Columbia University
Obsoletes: 1890 S. Casner
Category: Standards Track Packet Design
July 2003
RTP Profile for Audio and Video Conferences
with Minimal Control
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Network Communication Protocol Map. To order: http://www.javvin.com/map.html
Easy to use sniffing tool: http://www.javvin.com/packet.html
Copyright Notice Copyright (C) The Internet Society (2003). All Rights Reserved.
Abstract
This document describes a profile called "RTP/AVP" for the use of the
real-time transport protocol (RTP), version 2, and the associated
control protocol, RTCP, within audio and video multiparticipant
conferences with minimal control. It provides interpretations of
generic fields within the RTP specification suitable for audio and
video conferences. In particular, this document defines a set of
default mappings from payload type numbers to encodings.
This document also describes how audio and video data may be carried
within RTP. It defines a set of standard encodings and their names
when used within RTP. The descriptions provide pointers to reference
implementations and the detailed standards. This document is meant
as an aid for implementors of audio, video and other real-time
multimedia applications.
This memorandum obsoletes RFC 1890. It is mostly backwards-
compatible except for functions removed because two interoperable
implementations were not found. The additions to RFC 1890 codify
existing practice in the use of payload formats under this profile
and include new payload formats defined since RFC 1890 was published.
Schulzrinne & Casner Standards Track [Page 1]

RFC 3551 RTP A/V Profile July 2003
Table of Contents
1. Introduction ................................................. 3
1.1 Terminology ............................................. 3
2. RTP and RTCP Packet Forms and Protocol Behavior .............. 4
3. Registering Additional Encodings ............................. 6
4. Audio ........................................................ 8
4.1 Encoding-Independent Rules .............................. 8
4.2 Operating Recommendations ............................... 9
4.3 Guidelines for Sample-Based Audio Encodings ............. 10
4.4 Guidelines for Frame-Based Audio Encodings .............. 11
4.5 Audio Encodings ......................................... 12
4.5.1 DVI4 ............................................ 13
4.5.2 G722 ............................................ 14
4.5.3 G723 ............................................ 14
4.5.4 G726-40, G726-32, G726-24, and G726-16 .......... 18
4.5.5 G728 ............................................ 19
4.5.6 G729 ............................................ 20
4.5.7 G729D and G729E ................................. 22
4.5.8 GSM ............................................. 24
4.5.9 GSM-EFR ......................................... 27
4.5.10 L8 .............................................. 27
4.5.11 L16 ............................................. 27
4.5.12 LPC ............................................. 27
4.5.13 MPA ............................................. 28
4.5.14 PCMA and PCMU ................................... 28
4.5.15 QCELP ........................................... 28
4.5.16 RED ............................................. 29
4.5.17 VDVI ............................................ 29
5. Video ........................................................ 30
5.1 CelB .................................................... 30
5.2 JPEG .................................................... 30
5.3 H261 .................................................... 30
5.4 H263 .................................................... 31
5.5 H263-1998 ............................................... 31
5.6 MPV ..................................................... 31
5.7 MP2T .................................................... 31
5.8 nv ...................................................... 32
6. Payload Type Definitions ..................................... 32
7. RTP over TCP and Similar Byte Stream Protocols ............... 34
8. Port Assignment .............................................. 34
9. Changes from RFC 1890 ........................................ 35
10. Security Considerations ...................................... 38
11. IANA Considerations .......................................... 39
12. References ................................................... 39
12.1 Normative References .................................... 39
12.2 Informative References .................................. 39
13. Current Locations of Related Resources ....................... 41
Schulzrinne & Casner Standards Track [Page 2]

RFC 3551 RTP A/V Profile July 2003
14. Acknowledgments .............................................. 42
15. Intellectual Property Rights Statement ....................... 43
16. Authors' Addresses ........................................... 43
17. Full Copyright Statement ..................................... 44
1. Introduction
This profile defines aspects of RTP left unspecified in the RTP
Version 2 protocol definition (RFC 3550) [1]. This profile is
intended for the use within audio and video conferences with minimal
session control. In particular, no support for the negotiation of
parameters or membership control is provided. The profile is
expected to be useful in sessions where no negotiation or membership
control are used (e.g., using the static payload types and the
membership indications provided by RTCP), but this profile may also
be useful in conjunction with a higher-level control protocol.
Use of this profile may be implicit in the use of the appropriate
applications; there may be no explicit indication by port number,
protocol identifier or the like. Applications such as session
directories may use the name for this profile specified in Section
11.
Other profiles may make different choices for the items specified
here.
This document also defines a set of encodings and payload formats for
audio and video. These payload format descriptions are included here
only as a matter of convenience since they are too small to warrant
separate documents. Use of these payload formats is NOT REQUIRED to
use this profile. Only the binding of some of the payload formats to
static payload type numbers in Tables 4 and 5 is normative.
1.1 Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [2] and
indicate requirement levels for implementations compliant with this
RTP profile.
This document defines the term media type as dividing encodings of
audio and video content into three classes: audio, video and
audio/video (interleaved).
Schulzrinne & Casner Standards Track [Page 3]

RFC 3551 RTP A/V Profile July 2003
2. RTP and RTCP Packet Forms and Protocol Behavior
The section "RTP Profiles and Payload Format Specifications" of RFC
3550 enumerates a number of items that can be specified or modified
in a profile. This section addresses these items. Generally, this
profile follows the default and/or recommended aspects of the RTP
specification.
RTP data header: The standard format of the fixed RTP data
header is used (one marker bit).
Payload types: Static payload types are defined in Section 6.
RTP data header additions: No additional fixed fields are
appended to the RTP data header.
RTP data header extensions: No RTP header extensions are
defined, but applications operating under this profile MAY use
such extensions. Thus, applications SHOULD NOT assume that the
RTP header X bit is always zero and SHOULD be prepared to ignore
the header extension. If a header extension is defined in the
future, that definition MUST specify the contents of the first 16
bits in such a way that multiple different extensions can be
identified.
RTCP packet types: No additional RTCP packet types are defined
by this profile specification.
RTCP report interval: The suggested constants are to be used for
the RTCP report interval calculation. Sessions operating under
this profile MAY specify a separate parameter for the RTCP traffic
bandwidth rather than using the default fraction of the session
bandwidth. The RTCP traffic bandwidth MAY be divided into two
separate session parameters for those participants which are
active data senders and those which are not. Following the
recommendation in the RTP specification [1] that 1/4 of the RTCP
bandwidth be dedicated to data senders, the RECOMMENDED default
values for these two parameters would be 1.25% and 3.75%,
respectively. For a particular session, the RTCP bandwidth for
non-data-senders MAY be set to zero when operating on
unidirectional links or for sessions that don't require feedback
on the quality of reception. The RTCP bandwidth for data senders
SHOULD be kept non-zero so that sender reports can still be sent
for inter-media synchronization and to identify the source by
CNAME. The means by which the one or two session parameters for
RTCP bandwidth are specified is beyond the scope of this memo.
Schulzrinne & Casner Standards Track [Page 4]

RFC 3551 RTP A/V Profile July 2003
SR/RR extension: No extension section is defined for the RTCP SR
or RR packet.
SDES use: Applications MAY use any of the SDES items described
in the RTP specification. While CNAME information MUST be sent
every reporting interval, other items SHOULD only be sent every
third reporting interval, with NAME sent seven out of eight times
within that slot and the remaining SDES items cyclically taking up
the eighth slot, as defined in Section 6.2.2 of the RTP
specification. In other words, NAME is sent in RTCP packets 1, 4,
7, 10, 13, 16, 19, while, say, EMAIL is used in RTCP packet 22.
Security: The RTP default security services are also the default
under this profile.
String-to-key mapping: No mapping is specified by this profile.
Congestion: RTP and this profile may be used in the context of
enhanced network service, for example, through Integrated Services
(RFC 1633) [4] or Differentiated Services (RFC 2475) [5], or they
may be used with best effort service.
If enhanced service is being used, RTP receivers SHOULD monitor
packet loss to ensure that the service that was requested is
actually being delivered. If it is not, then they SHOULD assume
that they are receiving best-effort service and behave
accordingly.
If best-effort service is being used, RTP receivers SHOULD monitor
packet loss to ensure that the packet loss rate is within
acceptable parameters. Packet loss is considered acceptable if a
TCP flow across the same network path and experiencing the same
network conditions would achieve an average throughput, measured
on a reasonable timescale, that is not less than the RTP flow is
achieving. This condition can be satisfied by implementing
congestion control mechanisms to adapt the transmission rate (or
the number of layers subscribed for a layered multicast session),
or by arranging for a receiver to leave the session if the loss
rate is unacceptably high.
The comparison to TCP cannot be specified exactly, but is intended
as an "order-of-magnitude" comparison in timescale and throughput.
The timescale on which TCP throughput is measured is the round-
trip time of the connection. In essence, this requirement states
that it is not acceptable to deploy an application (using RTP or
any other transport protocol) on the best-effort Internet which
consumes bandwidth arbitrarily and does not compete fairly with
TCP within an order of magnitude.
Schulzrinne & Casner Standards Track [Page 5]
剩余43页未读,继续阅读













安全验证
文档复制为VIP权益,开通VIP直接复制

评论0