没有合适的资源?快使用搜索试试~ 我知道了~
首页C++递归算法实例代码
资源详情
资源评论
资源推荐

C++递归算法实例代码递归算法实例代码
主要介绍了C++递归算法实例代码,还是比较不错的,运用了递归算法解决相关问题,这里分享给大家,需要的
朋友可以参考下。
递归算法,总结起来具有以下几个特点:
特点1 它有一个基本部分,即直接满足条件,输出
特点2 它有一个递归部分,即 通过改变基数(即n),来逐步使得n满足基本部分的条件,从而输出
特点3 在实现的过程中,它采用了分治法的思想:
即将整体分割成部分,并总是从最小的部分(基本部分)开始入手(输出),其背后的原理在于 当整体递归到部分时,
会保留整体的信息,部分满足条件输出的结果会被回溯给整体使用,从而使得整体输出结果。
特点4 每一步操作,整体都会将部分当作其必要的一个步骤,从而实现整体步骤的完成
1.Question:
本题是用枚举的思路来判断一个规定的逻辑表达式是不是永真式
首先题目意思是最多不会有超过5个逻辑变量,有五种运算
Definitions of K, A, N, C, and
E
w x
Kwx
Awx
Nw
Cwx
Ewx
1 1 1 1 0 1 1
1 0 0 1 0 0 0
0 1 0 1 1 1 0
0 0 0 0 1 1 1
其中
K &
A |
N !
C ->
E 同或
其中的C我们可以利用 !A | B 实现
E利用==实现
本题的主要难点并不在于实现我们的语句计算的方式
难点难点1::
递归求解表达式,在这里真的是有深刻的理解了递归的强大之处,我们本题的做法真的离不开递归,我们的做法是一个一个字
符的开始枚举的递归,每个字符分出10种情况,五种变量,五种运算符,这里我们添加一个指示器变量表示我们当前的递归
的位置和深度,我们不用设置我们的递归的终止条件,因为我们的表达式保证了一定是正确的,我们的计算结果一定是会有返
回值的,我们的计算结果是一层一层的返回的
难点难点2::
位运算,我们本题如果不利用位运算的话,至少需要写5层循环来模拟我们的变量的所有的情况,这样太低效了,我们将我们
的所有的变量封装到一个一个字节的存储器中,每次利用位运算提取相关的位置的数字就好了(虽然我们的表达式并不会运算
所有的情况,但是至少不会错)
Code:
#include"iostream"
#include"cstdio"
#include"cstdlib"
#include"cstring"
using namespace std;
int pos=0;
string data;
bool cal(int i)
{
int t=pos++;
switch(data[t])
{
















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0