没有合适的资源?快使用搜索试试~ 我知道了~
首页GAN生成MNIST数据集(pytorch版)
前言 最近准备研究关于用GAN神经网络实现图片超分辨的项目,为了理解GAN神经网络的内涵和更熟悉的掌握pytorch框架的用法,写了这个小demo熟悉手感 思想 GAN的思想是是一种二人零和博弈思想,网上比较流行的一种比喻就是生成模型(G)是印假钞的人,而判别模型(D)就是判断是否是假钞的警察。 判别网络的目的:就是能判别输入的数据(如图片)它是来自真实样本集还是假样本集。假如输入的是真样本,网络输出就接近1,输入的是假样本,网络输出接近0,那么很完美,达到了很好判别的目的。 生成网络的目的:生成网络是造样本的,它的目的就是使得自己造样本的能力尽可能强,强到判别网络没法判断我是真样本还是假样本
资源详情
资源评论
资源推荐

GAN生成生成MNIST数据集(数据集(pytorch版)版)
前言前言
最近准备研究关于用GAN神经网络实现图片超分辨的项目,为了理解GAN神经网络的内涵和更熟悉的掌握pytorch框架的用
法,写了这个小demo熟悉手感
思想思想
GAN的思想是是一种二人零和博弈思想,网上比较流行的一种比喻就是生成模型(G)是印假钞的人,而判别模型(D)就是
判断是否是假钞的警察。
判别网络的目的:就是能判别输入的数据(如图片)它是来自真实样本集还是假样本集。假如输入的是真样本,网络输出就接
近1,输入的是假样本,网络输出接近0,那么很完美,达到了很好判别的目的。
生成网络的目的:生成网络是造样本的,它的目的就是使得自己造样本的能力尽可能强,强到判别网络没法判断我是真样本还
是假样本。
代码实现代码实现
talk is cheap,show me your code
# coding=utf-8
import torch.autograd
import torch.nn as nn
from torch.autograd import Variable
from torchvision import transforms
from torchvision import datasets
from torchvision.utils import save_image
import os
# 创建文件夹
if not os.path.exists('./img2'):
os.mkdir('./img2')
def to_img(x):
out = 0.5 * (x + 1)
out = out.clamp(0, 1) # Clamp函数可以将随机变化的数值限制在一个给定的区间[min, max]内:
out = out.view(-1, 1, 28, 28) # view()函数作用是将一个多行的Tensor,拼接成一行
return out
batch_size = 128
num_epoch = 1000
z_dimension = 50
# 图像预处理
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1,), (0.5,))
])
# mnist dataset mnist数据集下载,没有下载的将download改成True
mnist = datasets.MNIST(
root='./mnist/', train=True, transform=img_transform, download=False
)
# data loader 数据载入
dataloader = torch.utils.data.DataLoader(
dataset=mnist, batch_size=batch_size, shuffle=True


















weixin_38513794
- 粉丝: 1
- 资源: 947
上传资源 快速赚钱
我的内容管理 收起
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

会员权益专享
安全验证
文档复制为VIP权益,开通VIP直接复制

评论1