没有合适的资源?快使用搜索试试~ 我知道了~
首页电荷泵设计原理及在电路中的作用
电荷泵设计原理及在电路中的作用
1.0k 浏览量
更新于2023-05-28
评论 2
收藏 223KB PDF 举报
1、电荷泵原理电荷泵的基本原理是,电容的充电和放电采用不同的连接方式,如并联充电、串联放电,串联充电、并联放电等,实现升压、降压、负压等电压转换功能。上图为二倍升压电荷示,为简单的电荷泵电路。V2输出为方波信号,当V2为低电平的时候,V1通过D1、C1、V2对电容C2充电,C2两端电压上正下负;当V2为高电平输出的时候,V2输出电压与C1两端电压相叠加,通过D3对负载供电并对C2充电。如果忽略二极管压降,则C2两端电压Vo=V2+V1,其中V2为电压源V2的高电平输出电压。由于电荷泵整个工作过程的部分为电容充放电过程,所以重要的公式为电容充放电公式:I*T=ΔV*C,其中T为电容充放电周期,Δ
资源详情
资源评论
资源推荐

电荷泵设计原理及在电路中的作用电荷泵设计原理及在电路中的作用
1、电荷泵原理电荷泵的基本原理是,电容的充电和放电采用不同的连接方式,如并联充电、串联放电,串联充
电、并联放电等,实现升压、降压、负压等电压转换功能。上图为二倍升压电荷示,为简单的电荷泵电路。V2
输出为方波信号,当V2为低电平的时候,V1通过D1、C1、V2对电容C2充电,C2两端电压上正下负;当V2为高
电平输出的时候,V2输出电压与C1两端电压相叠加,通过D3对负载供电并对C2充电。如果忽略二极管压降,
则C2两端电压Vo=V2+V1,其中V2为电压源V2的高电平输出电压。由于电荷泵整个工作过程的部分为电容充放
电过程,所以重要的公式为电容充放电公式:I*T=ΔV*C,其中T为电容充放电周期,Δ
1、电荷泵原理、电荷泵原理
电荷泵的基本原理是,电容的充电和放电采用不同的连接方式,如并联充电、串联放电,串联充电、并联放电等,实现升
压、降压、负压等电压转换功能。
上图为二倍升压电荷示,为简单的电荷泵电路。V2输出为方波信号,当V2为低电平的时候,V1通过D1、C1、V2对电容
C2充电,C2两端电压上正下负;当V2为高电平输出的时候,V2输出电压与C1两端电压相叠加,通过D3对负载供电并对C2充
电。如果忽略二极管压降,则C2两端电压Vo=V2+V1,其中V2为电压源V2的高电平输出电压。
由于电荷泵整个工作过程的部分为电容充放电过程,所以重要的公式为电容充放电公式:I*T=ΔV*C,其中T为电容充放电
周期,ΔV为每个充放电周期内电容两端电压波动,I为充放电电流。
电荷泵以非常简单的电路可以实现升压、降压、负压等功能,所以各种不同的场合为电路扩展小功率电路。
2、电荷泵在电路中的作用、电荷泵在电路中的作用
1.功率电路中的电荷泵功率电路中的电荷泵
电荷泵的一个非常广泛的用途就是在由N沟道MOSFET构成的半桥电路中为上桥臂提供浮驱电压。典型接法如下图所示,
图中红框内的二极管D及电容Cboot与主电路中半桥的下桥臂T1构成电荷泵。当半桥的下臂T1开通时,Vcc通过D与T1为电容
Cboot充电;当T1关断T2导通时,Cboot为上臂T2提供MOSFET导通所必需的Vgs电压。这是由于T2在电路中的位置所决定
的,当T2导通时,如果忽略导通压降Vds,T2的源极电压Vs=Vr,所以如果想要饱和导通,加上T2门极上的驱动电压需满足
Vg=Vr+Vgs,对于功率型N沟道MOSFET而言,Vgs通常需要15V左右。电荷泵以很少的元器件满足了这一设计要求,所以在
此类应用中得到广泛应用。
虽然上图中所述的自举型电荷泵(采用半桥的下臂作为电荷泵的一部分)使电路设计变得非常简单,但实际使用过程中有


















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0