没有合适的资源?快使用搜索试试~ 我知道了~
首页深度学习之LENET网络、AlexNet网络、VGG网络、NiN网络中的网络、GoogLeNet网络
深度学习之LENET网络、AlexNet网络、VGG网络、NiN网络中的网络、GoogLeNet网络
674 浏览量
更新于2023-05-28
评论
收藏 239KB PDF 举报
1、LeNet 模型 LeNet分为卷积层块和全连接层块两个部分。下面我们分别介绍这两个模块。 (1)卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。 (2)卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用5×55×5 的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。 (3)全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。 下面我们通过Sequential类来实现LeN
资源详情
资源评论
资源推荐

深度学习之深度学习之LENET网络、网络、AlexNet网络、网络、VGG网络、网络、NiN网络中的网络、网络中的网络、GoogLeNet网络网络
1、、LeNet 模型模型
LeNet分为卷积层块和全连接层块两个部分。下面我们分别介绍这两个模块。
(1)卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。
(2)卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用5×55×5 的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输
出通道数则增加到16。
(3)全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。
下面我们通过Sequential类来实现LeNet模型。
In [1]:
#import
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
import torch
import torch.nn as nn
import torch.optim as optim
import time
In [2]:
#net
class Flatten(torch.nn.Module): #展平操作
def forward(self, x):
return x.view(x.shape[0], -1)
class Reshape(torch.nn.Module): #将图像大小重定型
def forward(self, x):
return x.view(-1,1,28,28) #(B x C x H x W)
net = torch.nn.Sequential( #Lelet
Reshape(),
nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2), #b*1*28*28 =>b*6*28*28
nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), #b*6*28*28 =>b*6*14*14
nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5), #b*6*14*14 =>b*16*10*10
nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), #b*16*10*10 => b*16*5*5
Flatten(), #b*16*5*5 => b*400
nn.Linear(in_features=16*5*5, out_features=120),
nn.Sigmoid(),
nn.Linear(120, 84),
nn.Sigmoid(),
nn.Linear(84, 10)
)
接下来我们构造一个高和宽均为28的单通道数据样本,并逐层进行前向计算来查看每个层的输出形状。
In [3]:
#print
X = torch.randn(size=(1,1,28,28), dtype = torch.float32)
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: ',X.shape)
Reshape output shape: torch.Size([1, 1, 28, 28])




















weixin_38735804
- 粉丝: 5
- 资源: 967
上传资源 快速赚钱
我的内容管理 收起
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

会员权益专享
最新资源
- Xilinx SRIO详解.pptx
- Informatica PowerCenter 10.2 for Centos7.6安装配置说明.pdf
- 现代无线系统射频电路实用设计卷II 英文版.pdf
- 电子产品可靠性设计 自己讲课用的PPT,包括设计方案的可靠性选择,元器件的选择与使用,降额设计,热设计,余度设计,参数优化设计 和 失效分析等
- MPC5744P-DEV-KIT-REVE-QSG.pdf
- 通信原理课程设计报告(ASK FSK PSK Matlab仿真--数字调制技术的仿真实现及性能研究)
- ORIGIN7.0使用说明
- 在VMware Player 3.1.3下安装Redhat Linux详尽步骤
- python学生信息管理系统实现代码
- 西门子MES手册 13 OpcenterEXCR_PortalStudio1_81RB1.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

评论0