深度学习之LENET网络、AlexNet网络、VGG网络、NiN网络中的网络、GoogLeNet网络

15 下载量 15 浏览量 更新于2023-05-04 收藏 239KB PDF 举报
1、LeNet 模型 LeNet分为卷积层块和全连接层块两个部分。下面我们分别介绍这两个模块。 (1)卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。 (2)卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用5×55×5 的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。 (3)全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。 下面我们通过Sequential类来实现LeN