没有合适的资源?快使用搜索试试~ 我知道了~
首页Python中的相关分析correlation analysis的实现
相关分析(correlation analysis) 研究两个或两个以上随机变量之间相互依存关系的方向和密切程度的方法。 线性相关关系主要采用皮尔逊(Pearson)相关系数r来度量连续变量之间线性相关强度; r>0,线性正相关;r<0,线性负相关; r=0,两个变量之间不存在线性关系,并不代表两个变量之间不存在任何关系。 相关分析函数 DataFrame.corr() Series.corr(other) 函数说明: 如果由数据框调用corr函数,那么将会计算每个列两两之间的相似度 如果由序列调用corr方法,那么只是该序列与传入的序列之间的相关度 返回值: DataFrame调用;返回D
资源详情
资源评论
资源推荐

Python中的相关分析中的相关分析correlation analysis的实现的实现
相关分析(相关分析(correlation analysis))
研究两个或两个以上随机变量之间相互依存关系的方向和密切程度的方法。
线性相关关系主要采用皮尔逊(Pearson)相关系数r来度量连续变量之间线性相关强度;
r>0,线性正相关;r<0,线性负相关;
r=0,两个变量之间不存在线性关系,并不代表两个变量之间不存在任何关系。
相关分析函数
DataFrame.corr()
Series.corr(other)
函数说明:
如果由数据框调用corr函数,那么将会计算每个列两两之间的相似度
如果由序列调用corr方法,那么只是该序列与传入的序列之间的相关度
返回值:
DataFrame调用;返回DataFrame
Series调用:返回一个数值型,大小为相关度
import numpy
import pandas
data = pandas.read_csv(
'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
bins = [
min(data.年龄)-1, 20, 30, 40, max(data.年龄)+1
] labels = [
'20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上'
]
data['年龄分层'] = pandas.cut(
data.年龄,
bins,
labels=labels
)
ptResult = data.pivot_table(
values=['年龄'],
index=['年龄分层'],
columns=['性别'],
aggfunc=[numpy.size] File "<ipython-input-1-ae921a24967f>", line 25
aggfunc=[numpy.size] ^
SyntaxError: unexpected EOF while parsing
import numpy
import pandas
data = pandas.read_csv(
'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
bins = [
min(data.年龄)-1, 20, 30, 40, max(data.年龄)+1
] labels = [
'20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上'
]

















weixin_38686187
- 粉丝: 7
- 资源: 965
上传资源 快速赚钱
我的内容管理 收起
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

会员权益专享
最新资源
- ARM Cortex-A(armV7)编程手册V4.0.pdf
- ABB机器人保养总结解析.ppt
- 【超详细图解】菜鸡如何理解双向链表的python代码实现
- 常用网络命令的使用 ipconfig ping ARP FTP Netstat Route Tftp Tracert Telnet nslookup
- 基于单片机控制的DC-DC变换电路
- RS-232接口电路的ESD保护.pdf
- linux下用time(NULL)函数和localtime()获取当前时间的方法
- Openstack用户使用手册.docx
- KUKA KR 30 hA,KR 60 hA机器人产品手册.pdf
- Java programming with JNI
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

评论0