没有合适的资源?快使用搜索试试~ 我知道了~
首页Python基于scipy实现信号滤波功能
1.背景介绍 在深度学习中,有时会使用Matlab进行滤波处理,再将处理过的数据送入神经网络中。这样是一般的处理方法,但是处理起来却有些繁琐,并且有时系统难以运行Matlab。Python作为一种十分强大的语言,是支持信号滤波滤波处理的。 本文将以实战的形式基于scipy模块使用Python实现简单滤波处理,包括内容有1.低通滤波,2.高通滤波,3.带通滤波,4.带阻滤波器。具体的含义大家可以查阅大学课程,信号与系统。简单的理解就是低通滤波指的是去除高于某一阈值频率的信号;高通滤波去除低于某一频率的信号;带通滤波指的是类似低通高通的结合保留中间频率信号;带阻滤波也是低通高通的结合只是过滤掉
资源详情
资源评论
资源推荐

Python基于基于scipy实现信号滤波功能实现信号滤波功能
1.背景介绍背景介绍
在深度学习中,有时会使用Matlab进行滤波处理,再将处理过的数据送入神经网络中。这样是一般的处理方法,但是处理起来
却有些繁琐,并且有时系统难以运行Matlab。Python作为一种十分强大的语言,是支持信号滤波滤波处理的。
本文将以实战的形式基于scipy模块使用Python实现简单滤波处理,包括内容有1.低通滤波,2.高通滤波,3.带通滤波,4.带阻
滤波器。具体的含义大家可以查阅大学课程,信号与系统。简单的理解就是低通滤波指的是去除高于某一阈值频率的信号;高
通滤波去除低于某一频率的信号;带通滤波指的是类似低通高通的结合保留中间频率信号;带阻滤波也是低通高通的结合只是
过滤掉的是中间部分。上面所说的内容会在实战部分加以介绍,可以对比理解一下。
如何实现的呢?我的理解,是通过时域转换为频域,在频域信号中去除相应频域信号,最后在逆转换还原为时域型号。具体的
内容还是要查阅大学课程,信号与系统。自己学的很一般就不班门弄斧了。
有什么作用呢?My Opinions,可以消除一些干扰信号,以低通滤波为例,例如我们如果只是统计脉搏信号波形,应该在1Hz
左右,却发现波形信号上有很多噪音,这些噪音都是成百上千Hz的,这些对于脉搏信号波形就属于无用的噪音,我们就可以
通过低通滤波器将超出某一阈值的信号过滤掉,此时得到的波形就会比较平滑了。
2.实战演练实战演练
首先我们使用到了scipy模块,可以通过下述命令进行安装:(我使用的Python==3.6)
pip install scipy
1).低通滤波
这里假设采样频率为1000hz,信号本身最大的频率为500hz,要滤除400hz以上频率成分,即截至频率为400hz,则
wn=2*400/1000=0.8。Wn=0.8
from scipy import signal
b, a = signal.butter(8, 0.8, 'lowpass') #配置滤波器 8 表示滤波器的阶数
filtedData = signal.filtfilt(b, a, data) #data为要过滤的信号

















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0