没有合适的资源?快使用搜索试试~ 我知道了~
首页Pytorch 使用 nii数据做输入数据的操作
使用pix2pix-gan做医学图像合成的时候,如果把nii数据转成png格式会损失很多信息,以为png格式图像的灰度值有256阶,因此直接使用nii的医学图像做输入会更好一点。 但是Pythorch中的Dataloader是不能直接读取nii图像的,因此加一个CreateNiiDataset的类。 先来了解一下pytorch中读取数据的主要途径——Dataset类。在自己构建数据层时都要基于这个类,类似于C++中的虚基类。 自己构建的数据层包含三个部分 class Dataset(object): """An abstract class representing a Dataset. A
资源详情
资源评论
资源推荐

Pytorch 使用使用 nii数据做输入数据的操作数据做输入数据的操作
使用pix2pix-gan做医学图像合成的时候,如果把nii数据转成png格式会损失很多信息,以为png格式图像的灰度值有256阶,
因此直接使用nii的医学图像做输入会更好一点。
但是Pythorch中的Dataloader是不能直接读取nii图像的,因此加一个CreateNiiDataset的类。
先来了解一下pytorch中读取数据的主要途径——Dataset类。在自己构建数据层时都要基于这个类,类似于C++中的虚基类。
自己构建的数据层包含三个部分
class Dataset(object):
"""An abstract class representing a Dataset.
All other datasets should subclass it. All subclasses should override
``__len__``, that provides the size of the dataset, and ``__getitem__``,
supporting integer indexing in range from 0 to len(self) exclusive.
"""
def __getitem__(self, index):
raise NotImplementedError
def __len__(self):
raise NotImplementedError
def __add__(self, other):
return ConcatDataset([self, other])
根据自己的需要编写CreateNiiDataset子类:
因为我是基于https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
做pix2pix-gan的实验,数据包含两个部分mr 和 ct,不需要标签,因此上面的 def getitem(self, index):中不需要index这个参数
了,类似地,根据需要,加入自己的参数,去掉不需要的参数。
class CreateNiiDataset(Dataset):
def __init__(self, opt, transform = None, target_transform = None):
self.path1 = opt.dataroot # parameter passing
self.A = 'MR'
self.B = 'CT'
lines = os.listdir(os.path.join(self.path1, self.A))
lines.sort()
imgs = [] for line in lines:
imgs.append(line)
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
def crop(self, image, crop_size):
shp = image.shape
scl = [int((shp[0] - crop_size[0]) / 2), int((shp[1] - crop_size[1]) / 2)] image_crop = image[scl[0]:scl[0] + crop_size[0],
scl[1]:scl[1] + crop_size[1]] return image_crop
def __getitem__(self, item):
file = self.imgs[item] img1 = sitk.ReadImage(os.path.join(self.path1, self.A, file))
img2 = sitk.ReadImage(os.path.join(self.path1, self.B, file))
data1 = sitk.GetArrayFromImage(img1)
data2 = sitk.GetArrayFromImage(img2)
if data1.shape[0] != 256:
data1 = self.crop(data1, [256, 256])
data2 = self.crop(data2, [256, 256])
if self.transform is not None:
data1 = self.transform(data1)
data2 = self.transform(data2)
if np.min(data1)<0:
data1 = (data1 - np.min(data1))/(np.max(data1)-np.min(data1))
if np.min(data2)<0:
#data2 = data2 - np.min(data2)
data2 = (data2 - np.min(data2))/(np.max(data2)-np.min(data2))
data = {}
data1 = data1[np.newaxis, np.newaxis, :, :] data1_tensor = torch.from_numpy(np.concatenate([data1,data1,data1], 1))
data1_tensor = data1_tensor.type(torch.FloatTensor)


















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0