基于基于SVPWM的永磁同步电机矢量控制系统设计的永磁同步电机矢量控制系统设计
采用空间矢量脉宽调制技术(SVPWM)算法,在MATLAB/SIMLINK软件环境下,构建了永磁同步电机(PMSM)
矢量控制系统转速以及电流双闭环PI调节的仿真模型,从而实现了对电机的动、静态控制。仿真结果表明,本
系统具有转矩脉动小,输出电流波形好,系统响应快等优点。
引言引言
基于正弦波的永磁同步电动机(简称PMSM)具有功率密度大、效率高、转子损耗小等优点,在运动控制领域得到了广泛的应
用。
本文借助PMSM
1 PMSM数学模型数学模型
该模型的电压、磁链、电磁转矩和功率方程(即派克方程)如下:
2 矢量控制系统矢量控制系统
2..1 矢量控制基本原理矢量控制基本原理
矢量控制的基本思想是在磁场定向坐标上,将电流矢量分解成两个相互垂直,彼此独立的矢量id(产生磁通的励磁电流分量)
和iq(产生转矩的转矩电流分量),也就是说,控制id和iq便可以控制电动机的转矩。
按转子磁链定向的控制方法(id=0)就是使定子电流矢量位于q轴,而无d轴分量。此时转矩Te和iq呈线性关系(由上转矩方
程),因此,只要对iq进行控制,就可以达到控制转矩的目的。既定子电流全部用来产生转矩,此时,PMSM的电压方程可写
为:
通过上面的简化过程可以看出,只要准确地检测出转子空间位置的θ角,并通过控制逆变器使三相定子的合成电流(磁动势)
位于q轴上,那么,通过控制定子电流的幅值,就能很好地控制电磁转矩。此时对PMSM的控制,就类似于对直流电机的控
制。
2..2 矢量控制调速系统的控制组成矢量控制调速系统的控制组成
在电机起动时,就应当通过软件进行系统初始定位,以获得转子的实际位置,这是永磁同步电机实现矢量控制的必要条
件。首先,应通过转子位置传感器检测出转子角位置ωr,同时计算出转子的速度n,然后检测定子(任两相)电流并经矢量变
换,以得到检测值id和iq,然后分别经PI调节器输出交直流轴电压值ud和uq,再经过坐标变换后生成电压值uα和uβ,最后利用
SVPWM方法输出6脉冲逆变器驱动控制信号。图l所示是PMSM矢量控制原理图。
评论0