没有合适的资源?快使用搜索试试~ 我知道了~
首页LM741构成的电容测量电路设计
LM741构成的电容测量电路设计
335 浏览量
更新于2023-05-29
评论 1
收藏 70KB PDF 举报
由LM741等构成的电容测量电路如下图所示,该电路的测量原理是被测电容Cx充、放电而形成三角波,测量三角波的振荡周期就可知电容量的大小。由A1可构成密勒积分电路,经A2构成的施密特电路形成正反馈而产生振荡。
资源详情
资源评论
资源推荐

LM741构成的电容测量电路设计构成的电容测量电路设计
由LM741等构成的电容测量电路如下图所示,该电路的测量原理是被测电容Cx充、放电而形成三角波,测量三
角波的振荡周期就可知电容量的大小。由A1可构成密勒积分电路,经A2构成的施密特电路形成正反馈而产生振
荡。
由
不接电容Cx时,A2以延迟约20μS的时间进行振荡,可以计算出Cx对此进行补偿。Cx电容量为1000μF时的测量时间为
10S。若R1和R2采用1KΩ的电阻,则测量时间可缩短到1/10。
电路输出U。外接计数器,就可以读出被测电容的容量。
LM709经R7、VT2到负输入端形成正反馈,构成施密特触发器。
当LM709输出高电平时,VT2饱和导通,VT2的C极电压为0V。VT3、VT1都截止,+15V电源经过R1、R2对Cx充电,LM741
的输出电压逐渐下降。当它降到0V时,施密特翻转,输出电压变低电平(-15V)。此时VT2变截止,VT2的C极电压升至+5V,
巩固了LM709的低电平输出状态。同时VT3、VT1获得基极电流而导通,Cx经过R2和-15V电源反向充电,LM741的输出电压
逐渐升高。当它升高到+5V时,施密特再次翻转,输出变高电平,完成一个周期。以上过程重复进行,就形成周期振荡。

















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0