没有合适的资源?快使用搜索试试~ 我知道了~
首页TensorFlow在MAC环境下的安装及环境搭建
TensorFlow在MAC环境下的安装及环境搭建
873 浏览量
更新于2023-05-27
评论
收藏 976KB PDF 举报
小编在论坛中看到很多朋友在寻找TensorFlow的环境搭建图文步骤以及安装的具体流程,在此小编给大家整理了一篇非常详细的图文流程,希望能够帮助到你。
资源详情
资源评论
资源推荐

TensorFlow在在MAC环境下的安装及环境搭建环境下的安装及环境搭建
小编在论坛中看到很多朋友在寻找TensorFlow的环境搭建图文步骤以及安装的具体流程,在此小编给大家整理了一篇非常详细的图文流程,希望能够帮助到你。
给大家分享一下TensorFlow在MAC系统中的安装步骤以及环境搭建的操作流程。
TensorFlow 底层的图模型结构清晰,容易改造;支持分布式训练;可视化效果好。如果做长期项目,接触较大数据集的话,TensorFlow很适用,而且谷歌也在不断优化完备它,对于使用深度学习朋
友,TensorFlow是一个很好的工具。
在学习了一段时间台大李宏毅关于deep learning的课程,以及一些其他机器学习的书之后,终于打算开始动手进行一些实践了。
感觉保完研之后散养状态下,学习效率太低了,于是便想白天学习,晚上对白天学习的知识做一些总结和记录,如果有不妥的地方,欢迎大家批评指教,共同进步。
一、深度学习框架的选择一、深度学习框架的选择
随着深度学习日趋火热,技术的逐渐兴起,各种深度学习框架也层出不穷。
目前使用普遍的框架有Tensorflow、Caffe、PyTorch、Theano、CNTK等,那么在这么多框架中该如何选择呢?
笔者作为一个初学者,架不住Tensorflow的名气之大,所以最开始便选择了Tensorflow。当然不仅仅只是因为名气大,Tensorflow作为谷歌主持的开源项目,它的社区热度目前看来是旺盛的,而且现在也
最为流行。听说,它是在谷歌总结了DistBelief的经验教训上形成的;它运行高效、可扩展性强,可以运行在手机、普通电脑、计算机群上。
下面再简单介绍一下其他深度学习框架的特点:
(1) Caffe:卷积神经网络框架,专注于卷积神经网络和图像处理,因为是基于C++语言,所以执行速度非常的快。
(2) PyTorch:动态computation graph!!!(笔者学习Tensorflow一段后,便会转学PyTorch试试看)
(3) Theano:因其定义复杂模型很容易,在研究中比较流行。
(4) CNTK:微软开发的,微软称其在语音和图像识别方面比其他框架更有优势。不过代码只支持C++.
Tensorflow的一些特性就不再说了,网络上相关资料也有很多。
下面就介绍一下Tensorflow的安装,笔者的安装顺序是首先安装Anaconda、然后安装Tensorflow、再安装Pycharm。
二、安装二、安装Anaconda
安装环境:
虽然笔者用的是mac,自带了Python,但是还是先安装了Anaconda(点击进入官网)。因为它集成了很多Python的第三方库,而且可以方便的管理不同版本的Python,在不同版本的Python之间切换。
而且Anaconda是一个科学计算环境,在电脑上安装完Anaconda之后,除了相当于安装了Python,也安装好了一些常用的库。



















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0