没有合适的资源?快使用搜索试试~ 我知道了~
首页spark: RDD与DataFrame之间的相互转换方法
资源详情
资源评论
资源推荐

spark: RDD与与DataFrame之间的相互转换方法之间的相互转换方法
今天小编就为大家分享一篇spark: RDD与DataFrame之间的相互转换方法,具有很好的参考价值,希望对大家
有所帮助。一起跟随小编过来看看吧
DataFrame是一个组织成命名列的数据集。它在概念上等同于关系数据库中的表或R/Python中的数据框架,但其经过了优
化。DataFrames可以从各种各样的源构建,例如:结构化数据文件,Hive中的表,外部数据库或现有RDD。
DataFrame API 可以被Scala,Java,Python和R调用。
在Scala和Java中,DataFrame由Rows的数据集表示。
在Scala API中,DataFrame只是一个类型别名Dataset[Row]。而在Java API中,用户需要Dataset<Row>用来表示
DataFrame。
在本文档中,我们经常将Scala/Java数据集Row称为DataFrames。
那么那么DataFrame和和spark核心数据结构核心数据结构RDD之间怎么进行转换呢?之间怎么进行转换呢?
代码如下:代码如下:
# -*- coding: utf-8 -*-
from __future__ import print_function
from pyspark.sql import SparkSession
from pyspark.sql import Row
if __name__ == "__main__":
# 初始化SparkSession
spark = SparkSession \
.builder \
.appName("RDD_and_DataFrame") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()
sc = spark.sparkContext
lines = sc.textFile("employee.txt")
parts = lines.map(lambda l: l.split(","))
employee = parts.map(lambda p: Row(name=p[0], salary=int(p[1])))
#RDD转换成DataFrame
employee_temp = spark.createDataFrame(employee)
#显示DataFrame数据
employee_temp.show()
#创建视图
employee_temp.createOrReplaceTempView("employee")
#过滤数据
employee_result = spark.sql("SELECT name,salary FROM employee WHERE salary >= 14000 AND salary <= 20000")
# DataFrame转换成RDD
result = employee_result.rdd.map(lambda p: "name: " + p.name + " salary: " + str(p.salary)).collect()
#打印RDD数据
for n in result:
print(n)




















weixin_38514660
- 粉丝: 6
- 资源: 947
上传资源 快速赚钱
我的内容管理 收起
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

会员权益专享
最新资源
- ARM Cortex-A(armV7)编程手册V4.0.pdf
- ABB机器人保养总结解析.ppt
- 【超详细图解】菜鸡如何理解双向链表的python代码实现
- 常用网络命令的使用 ipconfig ping ARP FTP Netstat Route Tftp Tracert Telnet nslookup
- 基于单片机控制的DC-DC变换电路
- RS-232接口电路的ESD保护.pdf
- linux下用time(NULL)函数和localtime()获取当前时间的方法
- Openstack用户使用手册.docx
- KUKA KR 30 hA,KR 60 hA机器人产品手册.pdf
- Java programming with JNI
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

评论0