基于基于NDIR原理的热电堆气体传感器的工作原理解析原理的热电堆气体传感器的工作原理解析
非分散红外(NDIR)光谱仪常被用来检测气体和测量碳氧化物(例如一氧化碳和二氧化碳)的浓度。一个红外
光束穿过采样腔,样本中的各气体组分吸收特定频率的红外线。通过测量相应频率的红外线吸收量,便可确定
该气体组分的浓度。之所以说这种技术是非分散的,是因为穿过采样腔的波长未经预先滤波;相反地,光滤波
器位于检波器之前,以便滤除选定气体分子能够吸收的波长之外的所有光线。
非分散红外(NDIR)光谱仪常被用来检测气体和测量碳氧化物(例如一氧化碳和二氧化碳)的浓度。一个红外光束穿过采样
腔,样本中的各气体组分吸收特定频率的红外线。通过测量相应频率的红外线吸收量,便可确定该气体组分的浓度。之所以说
这种技术是非分散的,是因为穿过采样腔的波长未经预先滤波;相反地,光滤波器位于检波器之前,以便滤除选定气体分子能
够吸收的波长之外的所有光线。
图1所示电路是一个基于NDIR原理的热电堆气体传感器完整电路。该电路针对二氧化碳检测优化,但采用不同滤光器的热电堆
之后亦可精确测量多种气体的浓度。
印刷电路板(PCB)采用Arduino扩展板尺寸设计,并与Arduino兼容平台板EVAL-ADICUP360对接。信号调理由低噪声放大
器AD8629 和 ADA4528-1以及精密模拟微控制器ADuCM360实现,该微控制器集 成可编程增益放大器、双通道24位Σ-Δ型模
数转换器(ADC)和ARMCortex-M3处理器。
热电堆传感器由通常串联(或偶尔并联)的大量热电偶组成。串联热电偶的输出电压取决于热电偶结与基准结之间的温度差。
该原理称为塞贝克效应,以其发现者Thomas Johann Seebeck命名。
本电路使用运算放大器AD8629放大热电堆传感器输出信号。热电堆输出电压相对较小(从几百微伏到几毫伏),需要高增益
和极低的失调与漂移,以避免直流误差。热电堆的高内阻特性(典型值为84 kΩ)需要低输入偏置电流的放大器以最大程度地
减少误差,而AD8629的偏置电流仅为30 pA(典型值)。该器件随时间和温度变化的漂移极低,在校准温度测量后不会引入
额外误差。与ADC采样速率同步的脉冲光源最大程度地减少低频漂移和闪烁噪声引起的误差。
AD8629在1 kHz下的电压噪声频谱密度仅为22 nV/√Hz,低于热电堆37 nV/√Hz的电压噪声密度。
AD8629在10 Hz下的电流噪声频谱密度也非常低,典型值仅为5 fA/√Hz。该电流噪声流过84 kΩ热电堆,10 Hz时的噪声贡献
仅为420 pV/√Hz。
图1. NDIR气体检测电路
采用低噪声放大器ADA4528-1作为缓冲的传感器共模电压为200mV,因此NTC和热电堆信号输出满足ADuCM360缓冲模式输
入的要求:ADuCM360 ADC缓冲模式输入为AGND + 0.1 V至约AVDD - 0.1 V。CN-0338 Arduino扩展板兼容其它类型的仅有
单端输入ADC的Arduino兼容平台。
该电路的斩波频率范围为0.1 Hz至5 Hz,可通过软件选择。低压差稳压器 ADP7105 l生成稳定的5 V输出电压以驱动红外光
源,并由ADuCM360控制开关。ADP7105具有软启动功能,可消除冷启动光源时产生的浪涌电流。
ADuCM360集成双通道、24位、Σ-Δ型ADC,在3.5 Hz至3.906 kHz的可编程速率范围内可同步采样双热电堆单元。NDIR系统
的数据采样速率范围限制在3.5 Hz至483 Hz之间,以便具有最佳的噪声性能。
热电堆检测器工作原理
为了理解热电堆,有必要回顾热电偶的基本理论。
如果在绝对零度以上的任意温度下连接两种不同的金属,则两种金属之间会产生电位差(热电EMF或接触电位),此电位差
是结温的函数(参见图2中的热电EMF电路)。
评论0