没有合适的资源?快使用搜索试试~ 我知道了~
首页DDR规范JESD79F.pdf
DDR规范JESD79F.pdf
需积分: 47 172 浏览量
更新于2023-05-26
评论
收藏 687KB PDF 举报
英文版DDR协议,后续将翻译DDR协议关键的部分,比如工作状态转移,vref,write,read,训练所需内容
资源详情
资源评论
资源推荐

JESD79F
Page 1
DOUBLE DATA RATE (DDR) SDRAM SPECIFICATION
16 M X4 (4 M X4 X4 banks), 8 M X8 (2 M X8 X4 banks), 4 M X16 (1 M X16 X4 banks)
32 M X4 (8 M X4 X4 banks), 16 M X8 (4 M X8 X4 banks), 8 M X16 (2 M X16 X4 banks)
64MX4(16MX4X4banks),32MX8(8MX8X4banks),16MX16(4MX16X4banks)
128MX4(32MX4X4banks),64MX8(16MX8X4banks),32MX16(8MX16X4banks)
256 M X4 (64 M X4 X4 banks), 128 M X8 (32 M X8 X4 banks), 64 M X16 (16 M X16 X4 banks)
FEATURES
• Double--data--rate architecture; two data transfers
per clock cycle
• Bidirectional, data strobe (DQS) is transmitted/re-
ceived with data, to be used in capturing data at
the receiver
• DQS is edge--aligned with data for READs; cen-
ter--aligned with data for WRITEs
• Differential clock inputs (CK and CK
)
• DLL aligns DQ and DQS transitions with CK transi-
tions
• Commands entered on each positive CK edge;
data and data mask referenced to both edges of
DQS
• Four internal banks for concurrent operation
• Data mask (DM) f or write data
• Burst lengths: 2, 4, or 8
• CAS Latency: 2 or 2.5, DDR400 also includes
CL = 3
• AUTO PRECHARGE option for each burst access
• Auto Refresh and Self Refresh Modes
• 2.5 V (SSTL_2 compatible) I/O
• VDDQ: +2.5 V ±0.2 V for DDR 200, 266, or 333
+2.6 ±0.1 V for DDR 400
• VDD:
+3.3 V ±0.3 V or +2.5 V ±0.2 V for DDR 200, 266,
or 333
+2.6 ±0.1 V for DDR 400
GENERAL DESCRIPTION
The DDR SDRAM is a high--speed CMOS, dynamic
random--access memory internally configured as a
quad--bank DRAM. These devices contain the follow-
ing number of bits:
64 Mb has 67,108,864 bits
128 Mb has 134,217,728 bits
256 Mb has 268,435,456 bits
512 Mb has 536,870,912 bits
1 Gb has 1,073,741,824 bits
The DDR SDRAMuses a double -- data--rate architec-
ture to achieve high -- s peed operation. The double
data rate architecture is essentially a 2n prefetch archi-
tecture with an interface designed to transfer two data
words per clock cycle at the I/O pins. A single read or
write access for the DDR SDRAM effectively consists
of a single 2n--bit wide, one clock cycle data transfer at
the internal DRAM core and two corresponding n --bit
wide, one -- half--clock -- cycle data transfers at the I/O
pins.
A bidirectional data strobe (DQS) is transmitted ex-
ternally, along with data, for use in data capture at the
receiver. DQS is a strobe transmitted by the DDR
SDRAM during READs and by the memory controller
during WRITEs. DQS is edge--aligned with data for
READs and center--aligned with data for WRITEs.
The DDR SDRAM operates from a differential clock
(CK and CK
; the crossing of CK going HIGH and CK
going LOW will be referred to as the positive edge of
CK). Commands (address and control signals) are reg-
istered at every positive edge of CK. Input data is regis-
tered on both edges of DQS, and output data is refer-
enced to both edges of DQS, as well as to both edges
of CK.
Read and write accesses to the DDR SDRAM are
burst oriented; accesses start at a selected location
and continue for a programmed number of locations in
a programmed sequence. Accesses begin with the
registration of an ACTIVE command, which is then fol-
lowed by a READ or WRITE command. The address
bits registered coincident with the ACTIVE command
are used to select the bank and row to be accessed.
The address bits registered coincident with the READ
or WRITE command are used to select the bank and
thestartingcolumnlocationfortheburstaccess.
The DDR SDRAM provides for programmable read
or write burst lengths of 2, 4 or 8 locations. An AUTO
PRECHARGE function may be enabled to provide a
self--timed row precharge that is initiated at the end of
the burst access.
As with standard SDRAMs, the pipelined, multibank
architecture of DDR SDRAMs allows for concurrent
operation, thereby providing high effective bandwidth
by hiding row precharge and activation time.
An auto refresh mode is provided, along with a pow-
er-- saving, power--down mode. All inputs are compat-
ible with the JEDEC Standard for SSTL_2. All outputs
are SSTL_2, Class II compatible.
Initial devices may have a VDD supply of 3.3 V (nomi-
nal). Eventually, all devices will migrate to a VDD s up-
ply of 2.5 V (nominal). During this initial period of prod-
uct availability, this split will be vendor and device
specific.
This data sheet includes all features and functional-
ity required for JEDEC DDR devices; options not re-
quired, but listed, are noted as such. Certain vendors
may elect to offer a superset of this specification by of-
fering improved timing and/or including optional fea-
tures. Users benefit from knowing that any system de-
sign based on the required aspects of this
specification are supported by all DDR SDRAM ven-
dors; conversely, users seeking to use any superset
specifications bear the responsibility to verify support
with individual vendors.
Note: The functionality described in, a nd the tim-
ing specifications included in this data sheet are
for the DLL Enabled mode of operation.
Note: This specification defines the minimum set of requirements for JEDEC X4/X8/X16 DDR SDRAMs.
Vendors will provide individual data sheets in their specific format. Vendor data sheets should be con -
sulted for optional features or superset specifications.

JESD79F
Page 2
CONTENTS
Features 1.................................................
General Description 1........................................
Pin Assignment Diagram, TSOP2 Package 3....................
Address Assignment Table 1a TSOP2 Package 3.................
Pin Assignment Diagram, BGA Package 4.......................
Address Assignment Table 1b BGA Package 5...................
Functional Block Diagram -- X4/X8/X16 5........................
Pin Descriptions, Table 2 6....................................
Functional Description 7......................................
Initialization 7...........................................
Register Definition 7.....................................
Mode Register 7.....................................
Burst Length 8..................................
Table 3, Burst Definition 8.........................
Fig. 4, Mode Register Definition 8..................
Burst Type 9....................................
Read Latency 9.................................
Operating Mode 9...............................
Terminology Defi nitions
DDR200 9.............................................
DDR266 9.............................................
DDR333 9.............................................
DDR400 9.............................................
Fig. 5, Required CAS Latencies 10.................
Extended Mode Register 11............................
DLL Enable/Disable 11............................
Output Drive Strength 11..........................
Fig.6, Extended Mode Register Definitions 11.........
Commands 12..............................................
Truth Table 1a (Commands) 12............................
Truth Table 1b (DM Operation) 12..........................
Truth Table 2 (CKE ) 13...................................
Truth Table 3 (Current State, Same Bank) 14 & 15.............
Truth Table 4 (Current State, Different Bank) 16 & 17..........
Fig. 7, Simplified State Diagram 18.........................
Command definitions 19 & 20..............................
DESELECT 19......................................
NO OPERATION (NOP) 19...........................
MODE REGISTER SET 19...........................
ACTIVE 19.........................................
READ 19..........................................
WRITE 19.........................................
BURST TERMINATE 19.............................
PRECHARGE 20...................................
AUTO PRECHARGE 20.............................
REFRESH REQUIREMENTS 20.......................
AUTO REFRESH 20................................
SELF REFRESH 20.................................
Table 4, Row--Column Organization by Density 19............
Operations 21...............................................
Bank/Row Activation 21..................................
Fig. 8, Activating a Specific Row 21.....................
Fig. 9, tRCD & tRRD Definition 21......................
Reads 22 & 23........................................
Fig. 10, Read Command 22...........................
Fig. 11, Read Burst 24................................
Fig. 12, Consecutive Read Bursts 25...................
Fig. 13, Nonconsecutive Read Bursts 26................
Fig. 14, Random Read Accesses 27....................
Fig. 15, Terminating a Read Burst 28...................
Fig. 16, Read to Write 29.............................
Fig. 17, Read to Precharge 30.........................
Writes 31...............................................
Fig. 18, Write Command 31...........................
Fig. 19, Write to Write--Max tDQSS 32..................
Fig. 20, Write to Write--Min tDQSS 32...................
Fig. 21, Write Burst -- Nom., Min., and Max tDQSS 33
Fig. 22, Write To Write -- Max tDQSS 34.................
Fig. 23, Write To Write -- Max tDQSS, Non Consecutive 35.
Fig. 24, Random Write Cycles -- Max tDQSS 36..........
Fig. 25, Write To Read -- Max tDQSS, Non--Interrupting 37.
Fig. 26, Write To Read -- Max tDQSS, Interrupting 38......
Fig. 27, Write To Read -- Max tDQSS,
Odd Number of Data, Interrupting 39.............
Fig. 28, Write To Precharge -- Max tDQSS,
Non--Interrupting 40............................
Fig. 29, Write To Precharge -- Max tDQSS,
Interrupting 41................................
Fig. 30, Write To Precharge -- Max tDQSS,
Odd Number of Data, Interrupting 42.............
Precharge 43...........................................
Fig. 31, Precharge Command 43.......................
Powerdown 43..........................................
Fig. 32, Power--Down 44..............................
Fig. 33, Clock Frequency Change in Precharge
Power--Down Mode 44...........................
Absolute Maximum Ratings 45.................................
Table 5 -- Capacitance 45....................................
Tab. 6 -- DC Electri cal Characteristics and Operating Conditions 45.
Table 7 -- AC Operating Conditions 46..........................
Table 8 -- Low Power DDR SDRAM Electrical Characteristics 46....
Table 9 Idd Specifications and Conditions, 47 & 48................
Fig. 34, IDD7 Measurement Timing Waveforms 48
Table 10 Low Power DDR Idd Specifi cations and Conditions, 49....
Table 11 -- AC Electri cal Characteristics (Timing Tabl e), 50 & 51.....
AC Timing Vari ations, DDR200, DDR266, DDR333, Table 12 52
Fig. 35, Test Reference Load 52...........................
Fig. 36, Method for Calculating Transitions and Endpoints 53
Component Specification Notes 52 & 53.........................
System Characteristics, DDR200, DDR266, & DDR333 54.........
Tables 13--19Signal Derating Specifications 54...................
Figs. 37 & 38, AC Overshoot/Undershoot Speci fication,
Tables 20 & 21, 55..................................
Table 22, Clamp V--I Characteristics 56.........................
Fig. 39, Pullup Slew Rate Test Load 57..........................
Fig. 40, Pulldown Slew Rate Test Load 57.......................
System Characteristics Notes 57 & 58...........................
Fig. 41, Full Strength Output V--I Characteristics 59 & 60
..........
Fig. 42 Weak Output V--I Characteristics 61 & 62................
DDR SDRAM Output Driver V--I Characteristics 63................
Timing Waveforms
Fig. 43, Data Input Timing 64..........................
Fig. 44, Data Output Timing 64.........................
Fig. 45, Initialize and Mode Register Set 65..............
Fig. 46, Power--Down Mode 66........................
Fig. 47, Auto Refresh Mode 67.........................
Fig. 48, Self Refresh Mode 68.........................
Reads
Fig. 49, Read -- Without Auto Precharge 69..............
Fig. 50, Read -- Without Auto Precharge (CL=1.5, BL=4) 70
Fig. 51, Read -- With Auto Precharge 71.................
Fig. 52, Bank Read Access 72.........................
Writes
Fig. 53, Write -- Without Auto Precharge 73..............
Fig. 54, Write -- With Auto Precharge 74.................
Fig. 55, Bank Write Accesses 75.......................
Fig. 56, Write -- DM Operation 76.......................
Annex A (Informational ) Differences Between 79D and 79C 77......

BA1
66 PIN
10.16 mm
1
2
3
4
5
6
7
8
9
10
11
48
47
46
45
44
35
34
VDD
NC
VDDQ
NC
DQ0
NC
VDDQ
VSS
NC
VSSQ
NC
DQ3
VDDQ
NC
NC
DQ2
X4 DDR SDRAM
TSOP2
CK
CKE0,
15
16
17
18
NC
NC
A11
A9
A8
19
20
A0
A1
A7
A6
NC,
NU
VDD
NC,
DQ1
NC
NC
VSSQ
DQS
VSSQ
NC
X8 DDR SDRAM
X16 DDR SDRAM
21
50
49
A2
A5
22
23
24
25
40
36
42
41
43
NC
VSSQ
12
13
14
37
39
38
A3
A4
TOP VIEW
VDD
VSS
26
27
VSSQ
NC
VDDQ
NC
VDDQ
PIN PITCH
0.65 mm
52
51
54
53
DQ6 DQ13
NC
BA0
A10
VSS
DQ7 DQ15
NC DQ14
NC DQ12
DQ5 DQ11
NC DQ10
DQ4 DQ9
NC DQ8
UDM
DQ0
NCDQ1
DQ1DQ2
NCDQ3
DQ2DQ4
NCDQ5
DQ3DQ6
NCDQ7
LDQS
LDM
NC
CS0,
RAS
CAS
WE
28
29
30
31
32
33
NC
CK
60
59
58
57
56
62
61
55
64
63
66
65
DM
NC
VREF
UDQS
ADDRESS ASSIGNMENT T ABLE
Density Org. Bank Row Addr. Col Addr Bank Addr
64 Mb 16M X 4 4 A0⇒A11 A0⇒A9 BA0, BA1
8M X 8 4 A0⇒A11 A0⇒A8 BA0, BA1
4M X 16 4 A0⇒A11 A0⇒A7 BA0, BA1
128 Mb 32M X 4 4 A0⇒A11 A0⇒A9, A11 BA0, BA1
16M X 8 4 A0⇒A11 A0⇒A9 BA0, BA1
8M X 16 4 A0⇒A11 A0⇒A8 BA0, BA1
256 Mb 64M X 4 4 A0⇒A12 A0⇒A9, A11 BA0, BA1
32M X 8 4 A0⇒A12 A0⇒A9 BA0, BA1
16M X 16 4 A0⇒A12 A0⇒A8 BA0, BA1
512 Mb 128M X 4 4 A0⇒A12 A0⇒A9,A11,A12 BA0, BA1
64M X 8 4 A0⇒A12 A0⇒A9, A11 BA0, BA1
32M X 16 4 A0⇒A12 A0⇒A9 BA0, BA1
1 Gb 256M X 4 4 A0⇒A13 A0⇒A9,A11,A12 BA0, BA1
128M X 8 4 A0⇒A13 A0⇒A9,A11 BA0, BA1
64M X 16 4 A0⇒A13 A0⇒A9 BA0, BA1
/AP
&
LSOJ
MS--024FC
MO--199
&
MO--200
A13
A12
CKE1,
NC
NC
CS1,
TABLE 1a: TSOP2 Device Add ress
Assignment Tab le
The following pin assignments apply
for CS
and CKE pins for Stacked
and Non--stacked devices.
Pin Non-- Stacked
Stacked
24 CS CS0
25 NC CS
1
43 NC CKE1
44 CKE CKE0
JESD79F
Page 3
Figure 1
64 Mb Through 1Gb DDR SDRAM (X4, X8, & X16) IN TSOP2 & LSOJ

JESD79F
Page 4
A
B
C
D
E
F
G
H
J
K
L
M
VSSQ NC
NC VDDQ DQ3
NC
VDDQ
NC
VSSQ
VDD NC
DQ0 NC
VDDQNC
DQ1 VSSQ NC
NC NCVDDQ
NC VDD
WE CAS
RAS
BA1 BA0
A0 A10/AP
A2 A1A5A6
A7A8
A9
CS
VREF
A12,NC
A13,NC
A4 A3
NC
VDDQ
VSSQ
DQ2NC
NC
CKE
A11
CK
VSSQ DQS
VSS DM
CK
VSS VDD
VSS
(x4)
A
B
C
D
E
F
G
H
J
K
L
M
VSSQ DQ7
NC VDDQ DQ6
NC
VDDQ
NC
VSSQ
VDD DQ0
DQ1 NC
VDDQDQ2
DQ3 VSSQ NC
NC NCVDDQ
NC VDD
WE CAS
RAS
BA1 BA0
A0 A10/AP
A2 A1A5A6
A7A8
A9
CS
VREF
A12,NC
A13,NC
A4 A3
DQ5
VDDQ
VSSQ
DQ4NC
NC
CKE
A11
CK
VSSQ DQS
VSS DM
CK
VSS VDD
VSS
(x8)
A
B
C
D
E
F
G
H
J
K
L
M
VSSQ DQ15
DQ14 VDDQ DQ13
DQ12
VDDQ
DQ3
VSSQ
VDD DQ0
DQ2 DQ1
VDDQDQ4
DQ6 VSSQ DQ5
LDQS DQ7VDDQ
LDM VDD
WE CAS
RAS
BA1 BA0
A0 A10/AP
A2 A1A5A6
A7
A8
A9
CS
VREF
A12,NC
A13,NC
A4 A3
DQ11
VDDQ
VSSQ
DQ9DQ10
DQ8
CKE
A11
CK
VSSQ UDQS
VSS UDM
CK
VSS VDD
VSS
(x16)
A
B
C
D
E
F
G
H
J
K
L
M
: Ball Existing
: Depopulated Ball
Top Vi e w
(See the balls through the Package)
1.0 mm
0.8 mm
max. 18 mm
max. 17 mm
for Micro DIMM
max. 10 mm
max. 8.5 mm
for Micro DIMM
[For Reference Only]
123456789
123 789
123789123789
X8 Device Ball PatternX4 Device Ball Pattern
X16 Device Ball Pattern
BGA Package Ball Pattern,
Top View
Figure 2
128 Mb Through 1Gb DDR SDRAM (X4, X8, & X16) IN BGA

JESD79F
Page 5
Item 128Mb 256Mb 512Mb 1Gb Note
Number of banks 4 4 4 4
Bank Address Pins BA0, BA1 BA0, BA1 BA0, BA1 BA0, BA1
Autoprecharge Pins A10/AP A10/AP A10/AP A10/AP
Row Addresses A0-A11 A0-A12 A0-A12 A0-A13
Column Addresses x4
x8
x16
A0-A9,A11
A0-A9
A0-A8
A0-A9,A11
A0-A9
A0-A8
A0-A9,A11,A12
A0-A9,A11
A0-A9
A0-A9,A11,A12
A0-A9,A11
A0-A9
H2 pin function NC A12 A12 A12
F13 pin function NC NC NC A13
JC11 MO # MO-233A MO-233A MO-233A MO-233A
JC11 Variation # AA AA AA AA
JC11 Package
Name
DSBGA DSBGA DSBGA DSBGA
Pin Pitch 0.8 mm x 1.0
mm
0.8 mm x 1.0
mm
0.8 mm x 1.0
mm
0.8 mm x 1.0
mm
TABLE 1b: BGA Device Address Assignment and Package Table
FIGURE 3: FUNCTIONAL BLOCK DIAGRAM OF DDR SDRAM
14
RAS
CAS
ROW--
ADDRESS
MUX
CK
CS
n
WE
CK
CONTROL
LOGIC
COLUMN--
ADDRESS
COUNTER/
LATCH
MODE REGISTERS
12
A0--A13,
BA0, BA1
CKEn
14
ADDRESS
REGISTER
16
I/O GATING
DM MASK LOGIC
COLUMN
DECODER
BANK0
MEMORY
ARRA Y
BANK0
ROW--
ADDRESS
LATCH
&
DECODER
16384
SENSE AMPLIFIERS
BANK
CONTROL
LOGIC
16
BANK1
BANK2
BANK3
14
11
1
2
2
REFRESH
COUNTER
Y
Y
Y
1
INPUT
REGISTERS
1
1
1
1
RCVRS
1
X
X
2
X
CK
out
DA TA
DQS
MASK
DA TA
CK
CLK
COL0
COL0
COL0
CK
in
DRVRS
DLL
MUX
DQS
GENERA TOR
Y
Y
Y
Y
Y
X
DQ0 --
DQn, DM
DQS
1
READ
LATCH
WRITE
FIFO
&
DRIVERS
Note 1: This Functional Block Diagram is intended to facilitate user understanding of the operation of the device; it does
not represent an actual circuit implementation.
Note 2: DM is a unidirectional signal (input only) but is internally loaded to match the load of the bidirectional DQ and DQS s ignals.
Note 3: Not all address inputs are used on all densities.
COMMAND
DECODE
X4 X8 X16
X 8 16 32
Y4 8 16
剩余77页未读,继续阅读












安全验证
文档复制为VIP权益,开通VIP直接复制

评论0