没有合适的资源?快使用搜索试试~ 我知道了~
首页Real analysis and probability
资源详情
资源评论
资源推荐

REAL ANALYSIS AND PROBABILITY
This much admired textbook, now reissued in paperback, offers a clear expo-
sition of modern probability theory and of the interplay between the properties
of metric spaces and probability measures.
The first half of the book gives an exposition of real analysis: basic set
theory, general topology, measure theory, integration, an introduction to func-
tional analysis in Banach and Hilbert spaces, convex sets and functions,
and measure on topological spaces. The second half introduces probability
based on measure theory, including laws of large numbers, ergodic theorems,
the central limit theorem, conditional expectations, and martingale conver-
gence. A chapter on stochastic processes introduces Brownian motion and the
Brownian bridge.
The new edition has been made even more self-contained than before;
it now includes early in the book a foundation of the real number system
and the Stone-Weierstrass theorem on uniform approximation in algebras
of functions. Several other sections have been revised and improved, and
the extensive historical notes have been further amplified. A number of new
exercises, and hints for solution of old and new ones, have been added.
R. M. Dudley is Professor of Mathematics at the Massachusetts Institute of
Technology in Cambridge, Massachusetts.

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS
Editorial Board:
B. Bollobas, W. Fulton, A. Katok, F. Kirwan, P. Sarnak
Already published
17 W. Dicks & M. Dunwoody Groups acting on graphs
18 L.J. Corwin & F.P. Greenleaf Representations of nilpotent Lie groups and their
applications
19 R. Fritsch & R. Piccinini Cellular structures in topology
20 H. Klingen Introductory lectures on Siegel modular forms
21 P. Koosis The logarithmic integral II
22 M.J. Collins Representations and characters of finite groups
24 H. Kunita Stochastic flows and stochastic differential equations
25 P. Wojtaszczyk Banach spaces for analysts
26 J.E. Gilbert & M.A.M. Murray Clifford algebras and Dirac operators in
harmonic analysis
27 A. Frohlich & M.J. Taylor Algebraic number theory
28 K. Goebel & W.A. Kirk Topics in metric fixed point theory
29 J.F. Humphreys Reflection groups and Coxeter groups
30 D.J. Benson Representations and cohomology I
31 D.J. Benson Representations and cohomology II
32 C. Allday & V. Puppe Cohomological methods in transformation groups
33 C. Soule et al. Lectures on Arakelov geometry
34 A. Ambrosetti & G. Prodi A primer of nonlinear analysis
35 J. Palis & F. Takens Hyperbolicity, stability and chaos at homoclinic bifurcations
37 Y. Meyer Wavelets and operators 1
38 C. Weibel An introduction to homological algebra
39 W. Bruns & J. Herzog Cohen-Macaulay rings
40 V. Snaith Explicit Brauer induction
41 G. Laumon Cohomology of Drinfeld modular varieties I
42 E.B. Davies Spectral theory and differential operators
43 J. Diestel, H. Jarchow, & A. Tonge Absolutely summing operators
44 P. Mattila Geometry of sets and measures in Euclidean spaces
45 R. Pinsky Positive harmonic functions and diffusion
46 G. Tenenbaum Introduction to analytic and probabilistic number theory
47 C. Peskine An algebraic introduction to complex projective geometry
48 Y. Meyer & R. Coifman Wavelets
49 R. Stanley Enumerative combinatorics I
50 I. Porteous Clifford algebras and the classical groups
51 M. Audin Spinning tops
52 V. Jurdjevic Geometric control theory
53 H. Volklein Groups as Galois groups
54 J. Le Potier Lectures on vector bundles
55 D. Bump Automorphic forms and representations
56 G. Laumon Cohomology of Drinfeld modular varieties II
57 D.M. Clark & B.A. Davey Natural dualities for the working algebraist
58 J. McCleary A user’s guide to spectral sequences II
59 P. Taylor Practical foundations of mathematics
60 M.P. Brodmann & R.Y. Sharp Local cohomology
61 J.D. Dixon et al. Analytic pro-P groups
62 R. Stanley Enumerative combinatorics II
63 R.M. Dudley Uniform central limit theorems
64 J. Jost & X. Li-Jost Calculus of variations
65 A.J. Berrick & M.E. Keating An introduction to rings and modules
66 S. Morosawa Holomorphic dynamics
67 A.J. Berrick & M.E. Keating Categories and modules with K-theory in view
68 K. Sato Levy processes and infinitely divisible distributions
69 H. Hida Modular forms and Galois cohomology
70 R. Iorio & V. Iorio Fourier analysis and partial differential equations
71 R. Blei Analysis in integer and fractional dimensions
72 F. Borceaux & G. Janelidze Galois theories
73 B. Bollobas Random graphs

REAL ANALYSIS AND
PROBABILITY
R. M. DUDLEY
Massachusetts Institute of Technology

The Pitt Building, Trumpington Street, Cambridge, United Kingdom
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa
http://www.cambridge.org
First published in printed format
ISBN 0-521-80972-X hardback
ISBN 0-521-00754-2
p
a
p
erback
ISBN 0-511-04208-6 eBook
R. M. Dudley 2004
2002
(netLibrary)
©
剩余565页未读,继续阅读
















susan-wang
- 粉丝: 47
- 资源: 2
上传资源 快速赚钱
我的内容管理 收起
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

会员权益专享
最新资源
- Xilinx SRIO详解.pptx
- Informatica PowerCenter 10.2 for Centos7.6安装配置说明.pdf
- 现代无线系统射频电路实用设计卷II 英文版.pdf
- 电子产品可靠性设计 自己讲课用的PPT,包括设计方案的可靠性选择,元器件的选择与使用,降额设计,热设计,余度设计,参数优化设计 和 失效分析等
- MPC5744P-DEV-KIT-REVE-QSG.pdf
- 通信原理课程设计报告(ASK FSK PSK Matlab仿真--数字调制技术的仿真实现及性能研究)
- ORIGIN7.0使用说明
- 在VMware Player 3.1.3下安装Redhat Linux详尽步骤
- python学生信息管理系统实现代码
- 西门子MES手册 13 OpcenterEXCR_PortalStudio1_81RB1.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

评论0