没有合适的资源?快使用搜索试试~ 我知道了~
首页Practical Time Series Forecasting with R A Hands-On Guide, 2nd Shmueli 2016
Practical Time Series Forecasting with R A Hands-On Guide, 2nd S...

Practical Time Series Forecasting with R A Hands-On Guide, 2nd Edition Shmueli 2016
资源详情
资源评论
资源推荐

G A L I T S H M U E L I
K E N N E T H C . L I C H T E N D A H L J R .
P R A C T I C A L
T I M E S E R I E S
F O R E C A S T I N G
W I T H R
A H A N D S - O N G U I D E
S E C O N D E D I T I O N
A X E L R O D S C H N A L L P U B L I S H E R S

Copyright © 2016 Galit Shmueli & Kenneth C. Lichtendahl Jr.
published by axelrod schnall publishers
isbn-13: 978-0-9978479-1-8
isbn-10: 0-9978479-1-3
Cover art: Punakha Dzong, Bhutan. Copyright © 2016 Boaz Shmueli
ALL RIGHTS RESERVED. No part of this work may be used or reproduced, transmitted,
stored or used in any form or by any means graphic, electronic, or mechanical, including but
not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, infor-
mation networks or information storage and retrieval systems, or in any manner whatsoever
without prior written permission.
For further information see www.forecastingbook.com
Second Edition, July 2016

Contents
Preface 9
1 Approaching Forecasting 15
1.1 Forecasting: Where? . . . . . . . . . . . . . . . . . . 15
1.2 Basic Notation . . . . . . . . . . . . . . . . . . . . . . 15
1.3 The Forecasting Process . . . . . . . . . . . . . . . . 16
1.4 Goal Definition . . . . . . . . . . . . . . . . . . . . . 18
1.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 23
2 Time Series Data 25
2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . 25
2.2 Time Series Components . . . . . . . . . . . . . . . . 28
2.3 Visualizing Time Series . . . . . . . . . . . . . . . . . 30
2.4 Interactive Visualization . . . . . . . . . . . . . . . . 35
2.5 Data Pre-Processing . . . . . . . . . . . . . . . . . . . 39
2.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 42
3 Performance Evaluation 45
3.1 Data Partitioning . . . . . . . . . . . . . . . . . . . . 45
3.2 Naive Forecasts . . . . . . . . . . . . . . . . . . . . . 50
3.3 Measuring Predictive Accuracy . . . . . . . . . . . . 51
3.4 Evaluating Forecast Uncertainty . . . . . . . . . . . 55
3.5 Advanced Data Partitioning: Roll-Forward Validation 62
3.6 Example: Comparing Two Models . . . . . . . . . . 65
3.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 67
4 Forecasting Methods: Overview 69
4.1 Model-Based vs. Data-Driven Methods . . . . . . . 69

4
4.2 Extrapolation Methods, Econometric Models, and Ex-
ternal Information . . . . . . . . . . . . . . . . . . . 70
4.3 Manual vs. Automated Forecasting . . . . . . . . . 72
4.4 Combining Methods and Ensembles . . . . . . . . . 73
4.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 77
5 Smoothing Methods 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Moving Average . . . . . . . . . . . . . . . . . . . . . 80
5.3 Differencing . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Simple Exponential Smoothing . . . . . . . . . . . . 87
5.5 Advanced Exponential Smoothing . . . . . . . . . . 90
5.6 Summary of Exponential Smoothing in R Using ets 98
5.7 Extensions of Exponential Smoothing . . . . . . . . 101
5.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 107
6 Regression Models: Trend & Seasonality 117
6.1 Model with Trend . . . . . . . . . . . . . . . . . . . . 117
6.2 Model with Seasonality . . . . . . . . . . . . . . . . 125
6.3 Model with Trend and Seasonality . . . . . . . . . . 129
6.4 Creating Forecasts from the Chosen Model . . . . . 132
6.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 133
7 Regression Models: Autocorrelation & External Info 143
7.1 Autocorrelation . . . . . . . . . . . . . . . . . . . . . 143
7.2 Improving Forecasts by Capturing Autocorrelation:
AR and ARIMA Models . . . . . . . . . . . . . . . . 147
7.3 Evaluating Predictability . . . . . . . . . . . . . . . . 153
7.4 Including External Information . . . . . . . . . . . . 154
7.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 170
8 Forecasting Binary Outcomes 179
8.1 Forecasting Binary Outcomes . . . . . . . . . . . . . 179
8.2 Naive Forecasts and Performance Evaluation . . . . 180
8.3 Logistic Regression . . . . . . . . . . . . . . . . . . . 181
8.4 Example: Rainfall in Melbourne, Australia . . . . . 183
8.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 187
9 Neural Networks 189

5
9.1 Neural Networks for Forecasting Time Series . . . . 189
9.2 The Neural Network Model . . . . . . . . . . . . . . 190
9.3 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . 194
9.4 User Input . . . . . . . . . . . . . . . . . . . . . . . . 195
9.5 Forecasting with Neural Nets in R . . . . . . . . . . 196
9.6 Example: Forecasting Amtrak Ridership . . . . . . . 198
9.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 201
10 Communication and Maintenance 203
10.1 Presenting Forecasts . . . . . . . . . . . . . . . . . . 203
10.2 Monitoring Forecasts . . . . . . . . . . . . . . . . . . 205
10.3 Written Reports . . . . . . . . . . . . . . . . . . . . . 206
10.4 Keeping Records of Forecasts . . . . . . . . . . . . . 207
10.5 Addressing Managerial "Forecast Adjustment" . . . 208
11 Cases 211
11.1 Forecasting Public Transportation Demand . . . . . 211
11.2 Forecasting Tourism (2010 Competition, Part I) . . . 215
11.3 Forecasting Stock Price Movements (2010 INFORMS
Competition) . . . . . . . . . . . . . . . . . . . . . . . 219
Data Resources, Competitions, and Coding Resources 225
Bibliography 227
Index 231
剩余231页未读,继续阅读


















安全验证
文档复制为VIP权益,开通VIP直接复制

评论1