没有合适的资源?快使用搜索试试~ 我知道了~
首页吴恩达新书Machine Learning Yearing共享版
资源详情
资源评论
资源推荐


Machine Learning Yearning is a
deeplearning.ai project.
Page 2 Machine Learning Yearning-Draft Andrew Ng

Table of Contents (Draft)
1 Why Machine Learning Strategy
2 How to use this book to help your team
3 Prerequisites and Notation
4 Scale drives machine learning progress
5 Your development and test sets
6 Your dev and test sets should come from the same distribution
7 How large do the dev/test sets need to be?
8 Establish a single-number evaluation metric for your team to optimize
9 Optimizing and satisficing metrics
10 Having a dev set and metric speeds up iterations
11 When to change dev/test sets and metrics
12 Takeaways: Setting up development and test sets
13 Build your first system quickly, then iterate
14 Error analysis: Look at dev set examples to evaluate ideas
15 Evaluating multiple ideas in parallel during error analysis
16 Cleaning up mislabeled dev and test set examples
17 If you have a large dev set, split it into two subsets, only one of which you look at
18 How big should the Eyeball and Blackbox dev sets be?
19 Takeaways: Basic error analysis
20 Bias and Variance: The two big sources of error
21 Examples of Bias and Variance
22 Comparing to the optimal error rate
23 Addressing Bias and Variance
24 Bias vs. Variance tradeoff
25 Techniques for reducing avoidable bias
Page 3 Machine Learning Yearning-Draft Andrew Ng

26 Techniques for reducing Variance
27 Error analysis on the training set
28 Diagnosing bias and variance: Learning curves
29 Plotting training error
30 Interpreting learning curves: High bias
31 Interpreting learning curves: Other cases
32 Plotting learning curves
33 Why we compare to human-level performance
34 How to define human-level performance
35 Surpassing human-level performance
36 Why train and test on different distributions
37 Whether to use all your data
38 Whether to include inconsistent data
39 Weighting data
40 Generalizing from the training set to the dev set
41 Addressing Bias, and Variance, and Data Mismatch
42 Addressing data mismatch
43 Artificial data synthesis
44 The Optimization Verification test
45 General form of Optimization Verification test
46 Reinforcement learning example
47 The rise of end-to-end learning
48 More end-to-end learning examples
49 Pros and cons of end-to-end learning
50 Learned sub-components
51 Directly learning rich outputs
Page 4 Machine Learning Yearning-Draft Andrew Ng

52 Error Analysis by Parts
53 Beyond supervised learning: What’s next?
54 Building a superhero team - Get your teammates to read this
55 Big picture
56 Credits
Page 5 Machine Learning Yearning-Draft Andrew Ng
剩余103页未读,继续阅读















zichen7055
- 粉丝: 38
- 资源: 10
上传资源 快速赚钱
我的内容管理 收起
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

会员权益专享
最新资源
- Xilinx SRIO详解.pptx
- Informatica PowerCenter 10.2 for Centos7.6安装配置说明.pdf
- 现代无线系统射频电路实用设计卷II 英文版.pdf
- 电子产品可靠性设计 自己讲课用的PPT,包括设计方案的可靠性选择,元器件的选择与使用,降额设计,热设计,余度设计,参数优化设计 和 失效分析等
- MPC5744P-DEV-KIT-REVE-QSG.pdf
- 通信原理课程设计报告(ASK FSK PSK Matlab仿真--数字调制技术的仿真实现及性能研究)
- ORIGIN7.0使用说明
- 在VMware Player 3.1.3下安装Redhat Linux详尽步骤
- python学生信息管理系统实现代码
- 西门子MES手册 13 OpcenterEXCR_PortalStudio1_81RB1.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

评论0