没有合适的资源?快使用搜索试试~ 我知道了~
首页LMS_Virtual.Lab声学数值方法
资源详情
资源评论
资源推荐

LMS International Numerical Acoustics
- 1 -
Numerical
Acoustics
Theoretical Manual
LMS International

LMS International Numerical Acoustics
- 2 -
TABLE OF CONTENT
1. INTRODUCTION TO NUMERICAL ACOUSTICS.............................................................5
1.1 INTRODUCTION ........................................................................................................................ 5
1.2 PROBLEM CLASSIFICATION ..................................................................................................... 6
1.2.1 Uncoupled versus coupled problems....................................................................................6
1.2.2 Interior and/or exterior problems ........................................................................................7
1.2.3 Transient versus time-harmonic problems...........................................................................8
1.2.4 Scattering versus radiation...................................................................................................8
1.3 MATHEMATICAL FORMULATION OF AN ACOUSTIC PROBLEM ................................................. 8
1.3.1 Acoustic wave equation ........................................................................................................8
1.3.2 Time-harmonic acoustic problems.....................................................................................11
1.3.2.1 Helmholtz equation......................................................................................................................11
1.3.2.2 Boundary conditions ....................................................................................................................12
1.4 MAIN PREDICTION TECHNIQUES FOR SOLVING (TIME-HARMONIC) ACOUSTIC PROBLEMS .... 15
1.4.1 Analytical and empirical methods......................................................................................16
1.4.2 Numerical methods .............................................................................................................16
1.4.2.1 Low-frequency techniques ..........................................................................................................16
1.4.2.2 High-frequency techniques..........................................................................................................32
1.5 REFERENCES.......................................................................................................................... 33
2. FINITE ELEMENT MODELING FOR ACOUSTICS........................................................37
2.1 INTRODUCTION ...................................................................................................................... 37
2.2 PROBLEM DEFINITION............................................................................................................ 38
2.3 BASIC PRINCIPLES.................................................................................................................. 39
2.3.1 Weighted residual formulation of the Helmholtz equation................................................39
2.3.2 Field variable approximations ...........................................................................................40
2.3.3 Finite element model for uncoupled acoustic problems ....................................................41
2.3.3.1 Acoustic stiffness matrix .............................................................................................................42
2.3.3.2 Acoustic mass matrix...................................................................................................................43
2.3.3.3 Acoustic excitation vectors..........................................................................................................43
2.3.3.4 Acoustic damping matrix.............................................................................................................45
2.3.3.5 Acoustic finite element model.....................................................................................................46
2.4 CONVERGENCE AND PARAMETRIC MAPPING ......................................................................... 47
2.4.1 Convergence .......................................................................................................................47
2.4.2 Parametric mapping ...........................................................................................................50
2.5 PROPERTIES ........................................................................................................................... 52
2.6 SOLUTION METHODS ............................................................................................................. 54
2.6.1 Direct solution method .......................................................................................................54
2.6.2 Modal solution method .......................................................................................................54
2.7 EXTERIOR RADIATION PROBLEMS ......................................................................................... 56
2.8 COUPLED VIBRO-ACOUSTIC PROBLEMS................................................................................. 58
2.8.1 Problem definition ..............................................................................................................59
2.8.2 Model types .........................................................................................................................60
2.8.2.1 Eulerian model .............................................................................................................................61
2.8.2.2 Lagrangian model ........................................................................................................................64
2.8.2.3 Mixed model ................................................................................................................................65
2.8.3 Model size reduction techniques ........................................................................................66
2.8.3.1 Modal expansion..........................................................................................................................66
2.8.3.2 Component mode synthesis .........................................................................................................69
2.8.3.3 Ritz vector expansion ..................................................................................................................72
2.8.4 Limitations of coupled FE/FE models................................................................................72
2.9 EXAMPLES ............................................................................................................................. 73
2.9.1 Uncoupled acoustic problem..............................................................................................73
2.9.1.1 Problem definition .......................................................................................................................73
2.9.1.2 Direct finite element model .........................................................................................................74

LMS International Numerical Acoustics
- 3 -
2.9.1.3 Modal finite element model.........................................................................................................77
2.9.2 Coupled vibro-acoustic problem ........................................................................................79
2.9.2.1 Problem definition .......................................................................................................................79
2.9.2.2 Model reduction techniques.........................................................................................................80
2.10 REFERENCES.......................................................................................................................... 82
3. BOUNDARY ELEMENT MODELING FOR ACOUSTICS ..............................................86
3.1 INTRODUCTION ...................................................................................................................... 86
3.2 PROBLEM DEFINITION............................................................................................................ 87
3.3 BOUNDARY INTEGRAL FORMULATIONS ................................................................................ 89
3.3.1 Preliminary considerations ................................................................................................89
3.3.2 Direct boundary integral formulation................................................................................90
3.3.3 Indirect boundary integral formulation .............................................................................95
3.4 BOUNDARY ELEMENT METHODS ........................................................................................... 99
3.4.1 Direct collocational boundary element method.................................................................99
3.4.1.1 Surface variable approximations .................................................................................................99
3.4.1.2 Direct collocational boundary element model ..........................................................................100
3.4.2 Indirect variational boundary element method................................................................101
3.4.2.1 Variational formulation .............................................................................................................101
3.4.2.2 Surface variable approximations ...............................................................................................104
3.4.2.3 Indirect variational boundary element model............................................................................105
3.5 CONVERGENCE .................................................................................................................... 106
3.5.1 Direct boundary element method .....................................................................................106
3.5.2 Indirect boundary element method...................................................................................110
3.6 PROPERTIES ......................................................................................................................... 111
3.6.1 Direct BEM versus indirect BEM.....................................................................................111
3.6.2 BEM versus FEM..............................................................................................................111
3.7 COUPLED VIBRO-ACOUSTIC PROBLEMS............................................................................... 114
3.7.1 Problem definition ............................................................................................................114
3.7.2 Coupled FE/BE models ....................................................................................................118
3.7.2.1 Coupled FE/direct BE model.....................................................................................................118
3.7.2.2 Coupled FE/indirect BE model .................................................................................................121
3.7.3 Coupled FE/BE versus coupled FE/FE............................................................................124
3.8 REFERENCES........................................................................................................................ 125
4. ATV CONCEPT AND ATV BASED APPLICATIONS ....................................................127
4.1 ACOUSTIC TRANSFER VECTORS.......................................................................................... 127
4.1.1 Direct Collocation Approach ...........................................................................................128
4.1.2 Indirect Variational Approach .........................................................................................128
4.1.3 ATV Interpolation .............................................................................................................129
4.2 ATV-BASED ACOUSTIC FORCED RESPONSE ....................................................................... 133
4.2.1 Radiated Acoustic Pressure..............................................................................................133
4.2.2 Radiated Acoustic Power .................................................................................................134
4.3 PANEL ACOUSTIC CONTRIBUTION ANALYSIS BASED ON ACOUSTIC TRANSFER VECTORS 135
4.3.1 Panel Acoustic Contribution Analysis..............................................................................135
4.4 INVERSE NUMERICAL ACOUSTICS....................................................................................... 136
4.4.1 Fine Approach ..................................................................................................................136
4.4.2 Coarse Approach..............................................................................................................137
4.4.3 Conditioning .....................................................................................................................137
4.4.4 Singular Value Decomposition.........................................................................................138
4.5 REFERENCE: ........................................................................................................................ 139
5. ACOUSTIC TREATMENTS ................................................................................................141
5.1 BACKGROUND ..................................................................................................................... 141
5.1.1 Structure-Cavity coupling with acoustic treatments........................................................141
5.1.1.1 Local governing equations.........................................................................................................142
5.1.1.2 Weak formulation of the problem .............................................................................................143
5.1.1.3 Local Admittance Model ...........................................................................................................144
5.1.1.4 Discretization of the weak formulation. ....................................................................................144
5.1.2 Transfer Admittance between two acoustic faces ............................................................146
5.2 TRIM MODELING AS TRANSFER ADMITTANCE .................................................................... 148

LMS International Numerical Acoustics
- 4 -
5.2.1 Transfer Admittance between a structural and an acoustic domain...............................148
5.2.1.1 Structural effect..........................................................................................................................149
5.2.1.2 Acoustic effect ...........................................................................................................................150
5.2.1.3 Note on the coupling matrix ......................................................................................................151
5.2.1.4 Global system.............................................................................................................................152
6. RANDOM ACOUSTICS........................................................................................................154
6.1 SUBJECT............................................................................................................................... 154
6.2 THEORETICAL BACKGROUND.............................................................................................. 154
6.2.1 Power, Correlation and Coherence .................................................................................154
6.2.1.1 Correlation .................................................................................................................................154
6.2.1.2 Power Spectra Density...............................................................................................................155
6.2.1.3 PSD of Responses......................................................................................................................155
6.2.1.4 PSD Estimation and Cross Power .............................................................................................156
6.2.1.5 Coherence ..................................................................................................................................157
6.2.2 Random and Deterministic quantities..............................................................................157
6.2.3 Virtual References and Referenced Virtual Spectra ........................................................158
6.2.3.1 References, excitations and responses.......................................................................................158
6.2.3.2 Virtual References .....................................................................................................................158
6.2.3.3 Referenced Virtual Spectra........................................................................................................159
6.2.3.4 Virtual Coherences ....................................................................................................................159
6.2.3.5 Coherent Autopower..................................................................................................................160
6.2.3.6 Reference Related Autopower...................................................................................................160
6.2.4 Principal Component Analysis.........................................................................................160
6.2.4.1 Truncated Singular Value Decomposition (SVD) ....................................................................160
6.2.4.2 Schur Decomposition.................................................................................................................161
6.2.4.3 Singular Subspace Decomposition (SSD).................................................................................161
6.2.4.4 Truncation of the decomposition...............................................................................................162
6.2.5 Principal Components and Virtual Spectra in response analyses ..................................162
6.2.5.1 Random Acoustics .....................................................................................................................162
6.2.5.2 Random Fatigue.........................................................................................................................163
6.2.5.3 Road Noise.................................................................................................................................163

LMS International Numerical Acoustics
- 5 -
Chapter One
1. Introduction to numerical
acoustics
W. Desmet
*
, P. Sas
†
1.1 Introduction
With the steadily increasing customer demands and competitive nature of the
market, engineers face the challenging but complex problem of meeting the ever
expanding but often conflicting design criteria. To accomplish this difficult task,
the industry has become aware and convinced that a major imperative for getting
insight in the sensitivity of the design criteria to the various design parameters
and for making any advance beyond the very time-consuming and expensive
prototype testing approach is to apply appropriate predictive engineering methods
(‘virtual prototyping’) in all stages of the design process.
Over the last few years, customer demands regarding acoustic performance,
along with the tightening of the legal regulations on noise emission levels and
human exposure to noise, have made the acoustic properties of a product into an
important criterion in many design problems. In the automotive and aerospace
industry, for instance, the passengers’ acoustic comfort has become an important
commercial asset. This affects the efforts in reducing the weight of cars and
aircraft, which are mainly motivated by potential fuel savings but quite often
induce substantial noise and vibration levels. In order to incorporate these
acoustic criteria in the design process, there is a strong need for numerical
*
Professor at Katholieke Universiteit Leuven, Leuven, Belgium
†
Full Professor at Katholieke Universiteit Leuven, Leuven, Belgium
剩余162页未读,继续阅读
















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0