没有合适的资源?快使用搜索试试~ 我知道了~
首页无监督学习,聚类,K-means
资源详情
资源评论
资源推荐

©2005-2007 Carlos Guestrin
Unsupervised learning or
Clustering –
K-means
Gaussian mixture models
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University
April 4
th
, 2007

©2005-2007 Carlos Guestrin
Some Data

©2005-2007 Carlos Guestrin
K-means
1. Ask user how many
clusters they’d like.
(e.g. k=5)

©2005-2007 Carlos Guestrin
K-means
1. Ask user how many
clusters they’d like.
(e.g. k=5)
2. Randomly guess k
cluster Center
locations

©2005-2007 Carlos Guestrin
K-means
1. Ask user how many
clusters they’d like.
(e.g. k=5)
2. Randomly guess k
cluster Center
locations
3. Each datapoint finds
out which Center it’s
closest to. (Thus
each Center “owns”
a set of datapoints)
剩余66页未读,继续阅读



















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0