没有合适的资源?快使用搜索试试~ 我知道了~
首页ERDAS_IMAGINE_2018_Release_Guide
ERDAS_IMAGINE_2018_Release_Guide

ERDAS_IMAGINE_2018_Release_Guide, ERDAS_IMAGINE_2018的发布说明
资源详情
资源评论
资源推荐

RELEASE GUIDE
ERDAS IMAGINE
February 27, 2018

February 27, 2018 2
Contents
About This Release .................................................................................................................. 8
ERDAS IMAGINE Product Tiers .............................................................................................. 8
New Platforms .......................................................................................................................... 8
64-Bit .................................................................................................................................... 8
ERDAS IMAGINE 2018 (64-bit) ...................................................................................... 9
ERDAS IMAGINE 2018 (32-bit) ...................................................................................... 9
Support of New Feature / Vector Data Formats .................................................................. 10
ArcGIS 10.5.1 ..................................................................................................................... 10
ERDAS Foundation Deprecated ......................................................................................... 10
New Licensing .................................................................................................................... 11
New Technology ..................................................................................................................... 12
Machine Learning Classification Operators ........................................................................ 12
NNDiffuse Pan Sharpening Operator .................................................................................. 12
Feature Extraction Operators ............................................................................................. 13
Other New Operators for Spatial Modeler ........................................................................... 13
Analyze Radiance ......................................................................................................... 13
Classify Using K-Means ................................................................................................ 14
Classify Using Deep Learning ....................................................................................... 15
Classify Using Machine Learning .................................................................................. 15
Compute Axis Length .................................................................................................... 15
Compute Circularity ...................................................................................................... 16
Compute Compactness ................................................................................................. 16
Compute Concavity ....................................................................................................... 17
Compute Convexity ....................................................................................................... 17
Compute Corner Count ................................................................................................. 17
Compute Eccentricity .................................................................................................... 18

February 27, 2018 3
Compute Horizontal Skewness ..................................................................................... 18
Compute Orientation ..................................................................................................... 18
Compute Orthogonality ................................................................................................. 19
Compute Primary Axis Skewness ................................................................................. 19
Compute Rectangularity ................................................................................................ 19
Compute Secondary Axis Skewness ............................................................................ 19
Compute Vertical Skewness ......................................................................................... 20
Convert ......................................................................................................................... 20
Convert To Surface ....................................................................................................... 20
Create Bounding Box .................................................................................................... 21
Create Centerline .......................................................................................................... 21
Create Centerpoint ........................................................................................................ 21
Create Centroid ............................................................................................................. 22
Create ConvexHull ........................................................................................................ 22
Create File Dataset Reference ...................................................................................... 22
Create Fitted Bounding Box .......................................................................................... 23
Create Oriented Bounding Box ..................................................................................... 24
Create Skeleton ............................................................................................................ 25
Data Information ........................................................................................................... 25
Define Deep Learning 2D Convolution Layer ................................................................ 25
Define Deep Learning 2D pooling Layer ....................................................................... 26
Define Deep Learning Activation Layer ......................................................................... 26
Define Deep Learning Dense Layer .............................................................................. 26
Define Deep Learning Flatten Layer ............................................................................. 27
Define Functional Attributes .......................................................................................... 27
Define Processing Area ................................................................................................ 27
Eliminate Unwanted Areas ............................................................................................ 28

February 27, 2018 4
Extract NITF Shapefile .................................................................................................. 28
Find Item ....................................................................................................................... 29
Generic Atmospheric Correction ................................................................................... 29
Get AWS Landsat 8 Scenes ......................................................................................... 30
Get Band IDs ................................................................................................................ 31
Get DRA Params .......................................................................................................... 32
Get ECW Options ......................................................................................................... 32
Get JFIF Options ........................................................................................................... 33
Get JPEG 2000 Options ................................................................................................ 34
Get Multispectral DRA Params ..................................................................................... 34
Get NITF 2.x Options .................................................................................................... 35
Get Preference Value ................................................................................................... 35
Get Raster Values By Percentage ................................................................................ 35
Get Referenced Dataset ............................................................................................... 37
Get SIPS Defaults ......................................................................................................... 37
Generate Functional Attributes ..................................................................................... 38
Initialize CART .............................................................................................................. 38
Initialize Deep Intellect .................................................................................................. 38
Initialize Inception ......................................................................................................... 39
initialize K-Nearest Neighbors ....................................................................................... 39
Initialize Naive Bayes .................................................................................................... 39
Initialize Random Forest ............................................................................................... 39
Initialize SVM ................................................................................................................ 40
Intersect Features ......................................................................................................... 40
Kurtosis Texture Per Feature ........................................................................................ 40
Machine Intellect Information ........................................................................................ 41
Machine Intellect Input .................................................................................................. 41

February 27, 2018 5
Machine Intellect Output ............................................................................................... 42
Mask features ............................................................................................................... 42
Merge Features ............................................................................................................. 42
Mean Euclidian Distance Texture Per Feature .............................................................. 42
Metadata Input .............................................................................................................. 43
Normalize Height .......................................................................................................... 43
Orthogonalize Geometry ............................................................................................... 44
Pan Sharpen By NNDiffuse ........................................................................................... 44
Range Stretch ............................................................................................................... 44
Raster Cache ................................................................................................................ 44
Raster Statistics Per Feature ........................................................................................ 45
Read Sensor Metadata ................................................................................................. 45
Remove Attributes ........................................................................................................ 46
Rename Attributes ........................................................................................................ 46
Select Attributes ............................................................................................................ 47
Set Band Names ........................................................................................................... 47
Set Primary Geometry................................................................................................... 48
Simplify Geometry ......................................................................................................... 48
Skew Texture Per Feature ............................................................................................ 49
Split By Skeleton ........................................................................................................... 50
Stack Count .................................................................................................................. 50
Tasseled Cap ................................................................................................................ 51
Update Statistics ........................................................................................................... 51
Variance Texture Per Feature ....................................................................................... 51
General Spatial Modeler ..................................................................................................... 52
Acceptable Values and other Input Contraints .............................................................. 52
Stack <Statistics> Operators ......................................................................................... 53
剩余106页未读,继续阅读












安全验证
文档复制为VIP权益,开通VIP直接复制

评论1