没有合适的资源?快使用搜索试试~ 我知道了~
首页[machine_learning_mastery系列]Machine_Learning_Mastery_with_R.pdf
Preface I think R is an amazing platform for machine learning. There are so many algorithms and so much power sit there ready to use. I am often asked the question: How do you use R for machine learning? This book is my definitive answer to that question. It contains my very best knowledge and ideas on how to work through predictive modeling machine learning projects using the R platform. It is the book that I am also going to use as a refresher at the start of a new project. I’m really proud of this book and I hope that you find it a useful companion on your machine learning journey with R.
资源详情
资源评论
资源推荐


Jason Brownlee
Machine Learning Mastery with R
Get Started, Build Accurate Models and Work Through Projects
Step-by-Step

i
Machine Learning Mastery with R
Copyright 2016 Jason Brownlee. All Rights Reserved.
First Edition, v1.1

Contents
Preface iii
I Introduction 1
1 Welcome 2
1.1 Learn R The Wrong Way ............................... 2
1.2 Machine Learning in R ................................ 2
1.3 What This Book is Not ................................ 6
1.4 Summary ....................................... 7
2 The R Platfor m 8
2.1 Why Use R ...................................... 8
2.2 What Is R ....................................... 9
2.3 Summary ....................................... 10
II Lessons 11
3 Installing and Starting R 12
3.1 Download and Install R ............................... 12
3.2 R Interactive Environment .............................. 14
3.3 R Scripts ........................................ 15
3.4 Summary ....................................... 16
4 Crash Course in R For Developers 17
4.1 R Syntax is Di↵erent, But The Same ........................ 17
4.2 Assignment ...................................... 18
4.3 Data Structures .................................... 18
4.4 Flow Control ..................................... 20
4.5 Functions ....................................... 21
4.6 Packages ........................................ 22
4.7 5 Things To Remember ................................ 23
4.8 Summary ....................................... 23
ii

iii
5 Standard Machine Learning Datasets 25
5.1 Practice On Small Well-Understood Dat a set s .................... 25
5.2 Package: datasets ................................... 26
5.3 Package: mlbench ................................... 27
5.4 Package: AppliedPredictiveModeling ........................ 34
5.5 Summary ....................................... 35
6 Load Your Machine Learning Datasets 36
6.1 Access To Your Data ................................. 36
6.2 Load Data Fro m CSV File .............................. 37
6.3 Load Data Fro m CSV URL ............................. 37
6.4 Summary ....................................... 38
7 Understand Your Da t a Using Descriptive Statistics 39
7.1 You Must Under st an d Your Data .......................... 39
7.2 Peek At Your Data .................................. 40
7.3 Dimensions of Your Data ............................... 41
7.4 Data Typ es ...................................... 41
7.5 Class Distribution ................................... 42
7.6 Data Summary .................................... 42
7.7 Standard Deviations ................................. 43
7.8 Skewness ........................................ 44
7.9 Correlations ...................................... 44
7.10 Tips To Remember .................................. 45
7.11 Summary ....................................... 45
8 Understand Your Data Using Data Visualization 47
8.1 Understand You r Data To Get The Best Results .................. 47
8.2 Visualization Packages ................................ 48
8.3 Univariate Visual i zat i o n ............................... 48
8.4 Multivariate Visu a l i zat i o n .............................. 52
8.5 Tips For Data Vi s u al i za t i on ............................. 57
8.6 Summary ....................................... 58
9 Prepare Your Dat a For Machine Learning With Pre-Processing 59
9.1 Need For Data Pre -Pr ocessing ............................ 59
9.2 Data Pre-Processing in R ............................... 60
9.3 Scale Data ....................................... 61
9.4 Center Data ...................................... 62
9.5 Standardize Data ................................... 63
9.6 Normalize Data .................................... 63
9.7 Box-Cox Transform .................................. 64
9.8 Yeo-Johnson Transform ................................ 65
9.9 Principal Component Analysis Transform ...................... 66
9.10 In d ependent Component Analysis Transform .................... 67
9.11 Tips For Data Transforms .............................. 69
9.12 Summary ....................................... 69
剩余223页未读,继续阅读










安全验证
文档复制为VIP权益,开通VIP直接复制

评论0