没有合适的资源?快使用搜索试试~ 我知道了~
首页state estimation for robot.pdf
state estimation for robot.pdf

state estimation for robot.pdf是经典的机器人位姿估计基本理论方面的教材,有广泛的知名度。该pdf文档高清完整,帮助入门机器视觉,slam等研究和应用领域
资源详情
资源评论
资源推荐

STATE ESTIMATION FOR
ROBOTICS
Timothy D. Barfoot
Copyright
c
2017
Cambridge University Press is the Official Publisher
This Unofficial Version Compiled on November 22, 2017
Send errata to <tim.barfoot@utoronto.ca>


Revision History
13 May 2017 Version best matching published first edition
12 Aug 2017 Equation (4.47a): Σ
x
changed to Σ
xx
12 Aug 2017 Page 111, bullet 4: Σ
y
changed to Σ
yy
12 Aug 2017 Page 117, bullet (ii): changed 4(a) to 3
12 Aug 2017 Equation (4.87):
ˆ
P
−
changed to
ˇ
P
k
12 Aug 2017 Equation (4.89):
ˆ
P
k
changed to
ˇ
P
k
12 Aug 2017 Equation (4.102d): x
op,k,0
changed to x
op,k,i
12 Aug 2017 Equation (7.102): removed negative sign
22 Nov 2017 Fixed typo in Jacobi identity (page 218)
iii


Contents
Acronyms and Abbreviations xi
Notation xiii
Foreword xv
1 Introduction 1
1.1 A Little History 1
1.2 Sensors, Measurements, and Problem Definition 3
1.3 How This Book Is Organized 4
1.4 Relationship to Other Books 5
Part I Estimation Machinery 7
2 Primer on Probability Theory 9
2.1 Probability Density Functions 9
2.1.1 Definitions 9
2.1.2 Bayes’ Rule and Inference 10
2.1.3 Moments 11
2.1.4 Sample Mean and Covariance 12
2.1.5 Statistically Independent, Uncorrelated 12
2.1.6 Normalized Product 13
2.1.7 Shannon and Mutual Information 14
2.1.8 Cram´er-Rao Lower Bound and Fisher Information 14
2.2 Gaussian Probability Density Functions 15
2.2.1 Definitions 15
2.2.2 Isserlis’ Theorem 16
2.2.3 Joint Gaussian PDFs, Their Factors, and Inference 18
2.2.4 Statistically Independent, Uncorrelated 20
2.2.5 Linear Change of Variables 20
2.2.6 Normalized Product of Gaussians 22
2.2.7 Sherman-Morrison-Woodbury Identity 23
2.2.8 Passing a Gaussian through a Nonlinearity 24
2.2.9 Shannon Information of a Gaussian 28
2.2.10 Mutual Information of a Joint Gaussian PDF 30
2.2.11 Cram´er-Rao Lower Bound Applied to Gaussian PDFs 30
2.3 Gaussian Processes 32
2.4 Summary 33
2.5 Exercises 33
v
剩余393页未读,继续阅读
















安全验证
文档复制为VIP权益,开通VIP直接复制

评论1