没有合适的资源?快使用搜索试试~ 我知道了~
首页Introductory Lectures on Convex Programming Volume I: Basic course
Introductory Lectures on Convex Programming Volume I: Basic cour...
需积分: 23 404 浏览量
更新于2023-05-23
评论
收藏 909KB PDF 举报
Optimization problems arise naturally in many application fields. Whatever people do, at some point they get a craving to organize things in a best possible way. This intention, converted in a mathematical form, turns out to be an optimization problem of certain type. Depending on the field of interest, it could be the optimal design problem, the optimal control problem, the optimal location problem or even the optimal diet problem.
资源详情
资源评论
资源推荐

Introductory Lectures on Convex Programming
Volume I: Basic course
Yu. Nesterov
July 2, 1998

Contents
Introduction 5
1 Nonlinear Programming 9
1.1 The World of Nonlinear Optimization . . . . . . . . . . . . . . . . . . . . . . 9
1.1.1 General formulation of the problem . . . . . . . . . . . . . . . . . . . 9
1.1.2 Performance of numerical methods . . . . . . . . . . . . . . . . . . . 12
1.1.3 Complexity bounds for global optimization . . . . . . . . . . . . . . . 14
1.1.4 Identity cards of the fields . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Local methods in unconstrained minimization . . . . . . . . . . . . . . . . . 20
1.2.1 Relaxation and approximation . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2 Classes of differentiable functions . . . . . . . . . . . . . . . . . . . . 24
1.2.3 Gradient method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.4 Newton method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3 First-order methods in nonlinear optimization . . . . . . . . . . . . . . . . . 38
1.3.1 Gradient method and Newton method: What is different? . . . . . . 38
1.3.2 Conjugate gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.3.3 Constrained minimization . . . . . . . . . . . . . . . . . . . . . . . . 46
2 Smooth Convex Programming 51
2.1 Minimization of Smooth Functions . . . . . . . . . . . . . . . . . . . . . . . 51
2.1.1 Smooth convex functions . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.1.2 Lower complexity bounds for F
∞,1
L
(R
n
) . . . . . . . . . . . . . . . . . 56
2.1.3 Strongly convex functions . . . . . . . . . . . . . . . . . . . . . . . . 60
2.1.4 Lower complexity bounds for S
1,1
µ,L
(R
n
) . . . . . . . . . . . . . . . . . 63
2.1.5 Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2 Optimal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.2.1 Optimal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.2.2 Convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.2.3 Gradient Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.2.4 Minimization methods for simple sets . . . . . . . . . . . . . . . . . . 82
2.3 Minimization Problem with Smooth Components . . . . . . . . . . . . . . . 84
2.3.1 MiniMax Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.3.2 Gradient Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1

2 CONTENTS
2.3.3 Minimization methods for minimax problem . . . . . . . . . . . . . . 89
2.3.4 Optimization with Functional Constraints . . . . . . . . . . . . . . . 92
2.3.5 Constrained minimization process . . . . . . . . . . . . . . . . . . . . 96
3 Nonsmooth Convex Programming 103
3.1 General Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.1.1 Motivation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 103
3.1.2 Operations with convex functions . . . . . . . . . . . . . . . . . . . . 108
3.1.3 Continuity and Differentiability of Convex Functions . . . . . . . . . 112
3.1.4 Separation Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.1.5 Subgradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.1.6 Computing the subgradients . . . . . . . . . . . . . . . . . . . . . . . 119
3.2 Nonsmooth Minimization Methods . . . . . . . . . . . . . . . . . . . . . . . 124
3.2.1 General Lower Complexity Bounds . . . . . . . . . . . . . . . . . . . 124
3.2.2 Main lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.2.3 Subgradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.2.4 Minimization with functional constraints . . . . . . . . . . . . . . . . 131
3.2.5 Complexity Bounds in Finite Dimension . . . . . . . . . . . . . . . . 133
3.2.6 Cutting Plane Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.3 Methods with Complete Data . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.3.1 Model of nonsmooth function . . . . . . . . . . . . . . . . . . . . . . 144
3.3.2 Kelly method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3.3.3 Level Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.3.4 Constrained Minimization . . . . . . . . . . . . . . . . . . . . . . . . 151
4 Structural Programming 157
4.1 Self-Concordant Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.1.1 Black box concept in Convex Programming . . . . . . . . . . . . . . 157
4.1.2 What the Newton method actually does? . . . . . . . . . . . . . . . . 159
4.1.3 Definition of self-concordant function . . . . . . . . . . . . . . . . . . 160
4.1.4 Main inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.1.5 Minimizing the self-concordant function . . . . . . . . . . . . . . . . 169
4.2 Self-Concordant Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.2.2 Definition of self-concordant barriers . . . . . . . . . . . . . . . . . . 175
4.2.3 Main Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.2.4 Path-following Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.2.5 Finding the analytic center . . . . . . . . . . . . . . . . . . . . . . . . 183
4.2.6 Problems with functional constraints . . . . . . . . . . . . . . . . . . 186
4.3 Applications of Structural Programming . . . . . . . . . . . . . . . . . . . . 189
4.3.1 Bounds on the parameter of a self-concordant barrier . . . . . . . . . 189
4.3.2 Linear and Quadratic Programming . . . . . . . . . . . . . . . . . . . 192
4.3.3 Semidefinite Programming . . . . . . . . . . . . . . . . . . . . . . . . 194

CONTENTS 3
4.3.4 Extremal ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.3.5 Separable Programming . . . . . . . . . . . . . . . . . . . . . . . . . 199
4.3.6 Choice of the minimization scheme . . . . . . . . . . . . . . . . . . . 202
Bibliographical comments 207
References 209
Index 211

4 CONTENTS
剩余208页未读,继续阅读
















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0