没有合适的资源?快使用搜索试试~ 我知道了~
首页Applied Smoothing Techniques for Data Analysi 数据分析中的应用平滑技术
资源详情
资源评论
资源推荐


OXFORD STATISTICAL SCIENCE SERIES
SERIES
EDITORS
A. C.
ATKINSON
J. B.
COPAS
D. A.
PIERCE
M. J.
SCHERVISH
D.
M.
TITTERINGTON

OXFORD
STATISTICAL
SCIENCE SERIES
A. C.
Atkinson:
Plots, transformations,
and
regression
M.
Stone:
Coordinate-free
multivariable statistics
W. J.
Krzanowski: Principles
of
multivariate analysis:
a
user's perspective
M.
Aitkin,
D.
Anderson,
B.
Francis,
and J.
Hinde:
Statistical modelling
in
GLIM
Peter
J.
Diggle:
Time series:
a
biostatistical introduction
Howell
Tong:
Non-linear time series:
a
dynamical system approach
V. P.
Godambe:
Estimating functions
A. C.
Atkinson
and A. N.
Donev:
Optimum experimental designs
U. N.
Bhat
and I. V.
Basawa:
Queuing
and
related models
J. K.
Lindsey: Models
for
repeated
measurements
N. T.
Longford:
Random
coefficient
models
P. J.
Brown: Measurement, regression,
and
calibration
Peter
J.
Diggle,
Kung-Yee
Liang,
and
Scott
L.
Zeger:
Analysis
of
longitudinal
data
J. I.
Ansell
and M. J.
Phillips:
Practical methods
for
reliability data analysis
J. K.
Lindsey:
Modelling frequency
and
count data
J. L.
Jensen:
Saddlepoint approximations
Steffen
L.
Lauritzen: Graphical models
A. W.
Bowman
and A.
Azzalini: Applied smoothing techniques
for
data analysis

Applied
Smoothing
Techniques
for
Data
Analysis
The
Kernel Approach with S-Plus Illustrations
ADRIAN
W.
BOWMAN
Department
of
Statistics
University
of
Glasgow
and
ADELCHI AZZALINI
Department
of
Statistical
Sciences
University
of
Padova,
Italy
CLARENDON
PRESS
•
OXFORD
1997

This page intentionally left blank
剩余204页未读,继续阅读




















安全验证
文档复制为VIP权益,开通VIP直接复制

评论0