Python实现K-Means聚类算法详解
需积分: 9 200 浏览量
更新于2024-07-16
收藏 888KB PDF 举报
"这篇资源详细介绍了K-Means算法,包括其原理和Python实现,并提到了使用scikit-learn库进行聚类的方法。"
K-Means算法是一种经典的无监督机器学习方法,主要用于数据的聚类,即将相似的数据对象归为一类。聚类是一种将数据集中的对象按照它们的相似性分成若干组的过程,每个组称为一个簇。在这个过程中,簇内的对象彼此相似,而不同簇的对象则相异。K-Means算法属于非监督学习,因为它在处理数据时不需要预先知道类别的标签。
K-Means算法的核心思想是通过迭代来寻找最优的簇中心。算法步骤大致如下:
1. 初始化:选择k个初始簇中心,通常使用“k-means++”策略来减少初始化对结果的影响。
2. 分配:计算每个数据点到所有簇中心的距离,将每个数据点分配给最近的簇中心。
3. 更新:重新计算每个簇的新中心,即簇内所有数据点的平均值。
4. 检查:如果簇中心不再变化或达到预设的最大迭代次数,算法停止;否则,返回步骤2。
在K-Means中,距离的度量通常是欧氏距离,但也可以选用其他距离度量方式,如曼哈顿距离。算法的目标是通过最小化簇内的平方误差和(Sum of Squared Errors, SSE),即每个数据点到其所在簇中心距离的平方和,来找到最佳的簇划分。
在Python中,我们可以利用scikit-learn库的`cluster`模块来实现K-Means算法。`KMeans`类提供了多种参数以适应不同的需求,如设置簇的数量`n_clusters`,初始化策略`init`,迭代次数`max_iter`,以及容差阈值`tol`等。例如,创建一个K-Means实例并拟合数据,可以这样写:
```python
from sklearn.cluster import KMeans
# 假设X是你的数据集
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)
```
执行`fit`方法后,`kmeans.labels_`会给出每个数据点所属的簇标签,而`kmeans.cluster_centers_`则包含了每个簇的中心位置。
K-Means算法简单且易于实现,但在实际应用中也存在一些局限性,如对初始簇中心敏感、难以处理非凸形状的簇、对异常值敏感等。此外,它假设簇的大小相近,形状类似圆形,这可能不适合某些复杂的数据分布情况。尽管如此,K-Means仍然是数据科学领域最常用的聚类方法之一,尤其适用于大规模数据集的快速处理。
2020-12-25 上传
2024-02-15 上传
2021-06-01 上传
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
ttataat
- 粉丝: 1
- 资源: 47
最新资源
- 俄罗斯RTSD数据集实现交通标志实时检测
- 易语言开发的文件批量改名工具使用Ex_Dui美化界面
- 爱心援助动态网页教程:前端开发实战指南
- 复旦微电子数字电路课件4章同步时序电路详解
- Dylan Manley的编程投资组合登录页面设计介绍
- Python实现H3K4me3与H3K27ac表观遗传标记域长度分析
- 易语言开源播放器项目:简易界面与强大的音频支持
- 介绍rxtx2.2全系统环境下的Java版本使用
- ZStack-CC2530 半开源协议栈使用与安装指南
- 易语言实现的八斗平台与淘宝评论采集软件开发
- Christiano响应式网站项目设计与技术特点
- QT图形框架中QGraphicRectItem的插入与缩放技术
- 组合逻辑电路深入解析与习题教程
- Vue+ECharts实现中国地图3D展示与交互功能
- MiSTer_MAME_SCRIPTS:自动下载MAME与HBMAME脚本指南
- 前端技术精髓:构建响应式盆栽展示网站