机器学习数学基础:线性代数与几何解析

需积分: 0 2 下载量 101 浏览量 更新于2024-07-15 收藏 16.59MB PDF 举报
"machine learning manual.pdf" 本书"machine learning manual.pdf"主要探讨了人工智能和机器学习的数学基础,包括线性代数、解析几何和矩阵分解等关键概念。以下是相关知识点的详细说明: 1. 人工智能 (AI) - 定义:AI 是一门研究如何使计算机具有智能行为的学科,涉及模拟、延伸和扩展人类智能的理论、方法、技术和应用。 - 应用:包括机器人、语音识别、图像识别、自然语言处理和专家系统等。 - 目标:创造能像人一样思考,甚至超越人类智能的智能机器。 2. 数学基础 - 线性代数:是机器学习的基础,涉及线性方程组、矩阵、向量空间、线性映射、基和秩、以及线性变换等内容。 - 系统线性方程组:机器学习中的许多优化问题可转化为求解线性方程组。 - 矩阵:用于表示数据和模型参数,矩阵运算在机器学习算法中至关重要。 - 向量空间和线性独立:理解和操作高维数据的空间结构。 - 矩阵分解:如特征值分解、奇异值分解等,常用于降维、特征提取和优化。 3. 解析几何 - 解析几何是研究坐标系下几何问题的数学分支,涉及距离、角度、正交性、旋转等概念。 - 内积和范数:定义了向量间的相互关系,如长度、角度和距离。 - 正交基和正交投影:用于数据压缩和特征选择。 - 旋转:在机器学习中,旋转矩阵用于数据的预处理和几何变换。 4. 矩阵分解 - 矩阵分解是机器学习中用于分析和处理数据的重要工具,如求解矩阵的行列式和迹。 - 矩阵分解有多种形式,如特征值分解、奇异值分解等,它们在主成分分析(PCA)、推荐系统和低秩近似中有广泛应用。 5. 机器学习 - 机器学习是AI的一个子领域,专注于让机器通过经验学习和改进。 - 包括监督学习、无监督学习、半监督学习和强化学习等多种方法。 - 机器学习的目标是构建能自动从数据中学习规律的模型。 6. 挑战与反馈 - 从事机器学习和AI研究需要计算机科学、心理学和哲学等多学科知识。 - 随着技术的发展,对“复杂工作”的定义也在不断变化。 - 书中鼓励读者积极参与练习和提供反馈,以加深理解和应用这些数学概念到实际问题中。 这些基础知识是理解和应用机器学习算法的关键,对于任何希望进入AI领域的学习者来说,都是不可或缺的知识体系。通过深入学习和实践,可以逐步掌握这些工具并解决实际问题。
2016-03-22 上传
Machine Learning in Python: Essential Techniques for Predictive Analysis Paperback: 360 pages Publisher: Wiley; 1 edition (April 27, 2015) Language: English ISBN-10: 1118961749 ISBN-13: 978-1118961742 Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, data preparation, and using the trained models in practice. You will learn a core set of Python programming techniques, various methods of building predictive models, and how to measure the performance of each model to ensure that the right one is used. The chapters on penalized linear regression and ensemble methods dive deep into each of the algorithms, and you can use the sample code in the book to develop your own data analysis solutions. Machine learning algorithms are at the core of data analytics and visualization. In the past, these methods required a deep background in math and statistics, often in combination with the specialized R programming language. This book demonstrates how machine learning can be implemented using the more widely used and accessible Python programming language. * Predict outcomes using linear and ensemble algorithm families * Build predictive models that solve a range of simple and complex problems * Apply core machine learning algorithms using Python * Use sample code directly to build custom solutions Machine learning doesn't have to be complex and highly specialized. Python makes this technology more accessible to a much wider audience, using methods that are simpler, effective, and well tested. Machine Learning in Python shows you how to do this, without requiring an extensive background in math or statistics.
2023-05-18 上传