基于PLS的多采样率过程故障检测优化与仿真研究
196 浏览量
更新于2024-08-26
1
收藏 1.16MB PDF 举报
本文主要探讨了"基于PLS的多采样率过程故障检测及其仿真"这一主题,针对过程控制领域中常见的一种复杂情况——过程变量与质量变量之间的多采样率系统过程监测问题。传统的方法可能由于数据采样率不一致而引入偏差,影响故障检测的准确性和效率。作者提出了一个创新的解决方案,即利用偏最小二乘(Partial Least Squares, PLS)分析技术。
PLS是一种统计方法,它在处理大量高维、低秩的数据时特别有效,特别是在存在缺失数据的情况下。该研究首先通过"插值—滤波—抽取"的技术手段,将不同采样率的数据统一到相同的频率,从而消除因采样率差异导致的分析难题。这种方法有效地利用了数据中的不完整信息,减少了由多采样率带来的影响。
文章不仅阐述了离线建模步骤,即如何利用历史数据训练PLS模型,还设计了在线故障检测算法,使得模型能够在实际运行环境中实时监控过程状态,并快速识别潜在故障。为了验证其有效性,作者将所提出的PLS方法与传统的多采样率主元分析方法进行了对比实验。结果显示,PLS方法在处理过程变量与质量相关的问题上表现出更好的性能,能够提供更精确和稳定的故障检测结果。
此外,该研究还通过在TE工业过程平台上进行仿真分析,进一步证实了新方法的实用性和优越性。仿真结果证明,对于这类多采样率过程,采用基于PLS的故障检测策略能够显著提高故障诊断的准确性和响应速度,从而提升整体过程控制系统的稳定性。
本文的研究对于优化多采样率过程的故障检测策略具有重要的理论价值和实际应用前景,尤其是在工业自动化领域,有助于提升生产过程的稳定性和效率。中图分类号TP306.3表明该研究属于计算机科学技术中的控制技术与应用类别,文献标识码B则表示这是一篇报道性文章。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2021-10-02 上传
2022-07-14 上传
2022-07-14 上传
2022-07-15 上传
2015-07-13 上传
weixin_38713099
- 粉丝: 4
- 资源: 905
最新资源
- 菲格瑞思压力传感器原理探究
- 求职者的福音:免费分享高颜值简历模板
- Android Studio Class1 项目实例教程
- 适用于iOS开发者的iMoDevTools功能克隆
- 高效口罩检测系统助力COVID-19安全防护
- 多语言版Usher New Tab-crx插件介绍
- Vortex数据与Apache Storm集成教程
- Roam to Git:简化笔记到版本控制的转换流程
- 高颜值简约大气个人简历模板免费下载
- 查找IAM用户:AWS访问密钥所有者识别脚本介绍
- Java塔防游戏引擎设计教程与实现
- bytebank员工系统开发实践
- 安卓开发教程:实现京东与饿了么的左右联动效果
- DebUsSy DFA Suite开源工具:纳米材料粉末衍射数据分析
- React前端骨架:简化开发的高效框架
- 开源医学语音翻译器medSLT