基于PLS的多采样率过程故障检测优化与仿真研究
130 浏览量
更新于2024-08-26
1
收藏 1.16MB PDF 举报
本文主要探讨了"基于PLS的多采样率过程故障检测及其仿真"这一主题,针对过程控制领域中常见的一种复杂情况——过程变量与质量变量之间的多采样率系统过程监测问题。传统的方法可能由于数据采样率不一致而引入偏差,影响故障检测的准确性和效率。作者提出了一个创新的解决方案,即利用偏最小二乘(Partial Least Squares, PLS)分析技术。
PLS是一种统计方法,它在处理大量高维、低秩的数据时特别有效,特别是在存在缺失数据的情况下。该研究首先通过"插值—滤波—抽取"的技术手段,将不同采样率的数据统一到相同的频率,从而消除因采样率差异导致的分析难题。这种方法有效地利用了数据中的不完整信息,减少了由多采样率带来的影响。
文章不仅阐述了离线建模步骤,即如何利用历史数据训练PLS模型,还设计了在线故障检测算法,使得模型能够在实际运行环境中实时监控过程状态,并快速识别潜在故障。为了验证其有效性,作者将所提出的PLS方法与传统的多采样率主元分析方法进行了对比实验。结果显示,PLS方法在处理过程变量与质量相关的问题上表现出更好的性能,能够提供更精确和稳定的故障检测结果。
此外,该研究还通过在TE工业过程平台上进行仿真分析,进一步证实了新方法的实用性和优越性。仿真结果证明,对于这类多采样率过程,采用基于PLS的故障检测策略能够显著提高故障诊断的准确性和响应速度,从而提升整体过程控制系统的稳定性。
本文的研究对于优化多采样率过程的故障检测策略具有重要的理论价值和实际应用前景,尤其是在工业自动化领域,有助于提升生产过程的稳定性和效率。中图分类号TP306.3表明该研究属于计算机科学技术中的控制技术与应用类别,文献标识码B则表示这是一篇报道性文章。
2021-10-02 上传
2022-07-14 上传
2022-07-14 上传
2022-07-15 上传
2015-07-13 上传
2024-05-05 上传
weixin_38713099
- 粉丝: 4
- 资源: 905
最新资源
- CIS110班级页面时钟设计与HTML实现
- WEB进销存管理系统wbjxc v3.0:提升企业销售与服务效率
- Ruby应用程序部署与运行指南
- Swift编程新手的FirstTry项目解析
- Laravel Events Repo:深入代码库探索PHP框架
- 深入探索Java开发的ThemeApp应用
- LitElement全局事件处理轻松搞定
- Electron + Vite + Tailwindcss 前端开发实践启动模板
- MicrosoftDocsaltspace-vr-pr:公共同步与PowerShell集成
- Okane:全新免费开源实用程序Mod,专为Fabric开发
- React 应用开发入门指南:脚本使用与构建部署
- 使用Matlab实现算术亚式期权定价及增量计算
- 经济管理学专业求职简历模板免费下载
- Parchment项目:打造个性化轻量级独奏Wiki解决方案
- Ogre3D网格动画查看工具LittleMeshViewer开源解析
- 智能DOM选择器:类似jQuery的DOM元素选择方法