C#特性:科学计算的潜力与性能优化

0 下载量 149 浏览量 更新于2024-08-27 收藏 282KB PDF 举报
C#语言作为一门强大的通用编程语言,在Web开发、数据库交互、图形用户界面等多个领域取得了显著的成功。对于科学计算这样的高精度、性能关键型应用,人们不禁质疑C#是否能够达到FORTRAN和C++等传统科学计算语言的高度。本文旨在深入探讨C#在科学计算项目中的潜力和实际效能。 首先,文章关注的是.NET通用语言运行时(.NET CLR)及其组件,如即时(JIT)编译器。JIT编译器允许C#代码在运行时转化为机器码,这在一定程度上减少了编译时间,提升了性能。同时,微软中间语言(MSIL)提供了跨平台的优势,使得C#能在不同的操作系统上运行。垃圾收集器虽然可能带来一定的内存管理开销,但在科学计算中,只要处理的是数学运算而非复杂的引用类型,其对性能的影响通常可以控制在可接受范围内。 C#的数据类型,特别是数组和矩阵,经过优化,为科学计算提供了高效的存储和操作机制。C#还支持泛型,这让开发者可以编写一次代码适用于不同类型的对象,减少了重复代码,提高了代码的复用性和可维护性。此外,C#的面向对象特性,如封装和继承,使其易于构建复杂的数据结构和算法。 尽管C#在传统GUI和Web组件开发中表现出色,但它确实正在逐步进入科学计算领域。文章指出,通过合理利用C#的特性,比如使用并行处理库(如Parallel Extensions)以及利用.NET框架的性能优化工具,C#能够在科学计算中展现出强大的能力。通过对比基准测试,我们可以看到C#在处理大量数值计算时与非托管的C++代码相比,虽然可能不占绝对优势,但差距并非不可逾越。 文章最后强调,尽管科学计算有着严格的性能要求,但C#凭借其动态类型系统、垃圾回收机制和逐步适应科学计算需求的改进,已经证明了其在特定场景下的有效性。C#正逐渐赢得科学团体的认可,为其开发高性能的数字编码打开了新的可能性。因此,对于那些寻求性能稳健且易于使用的编程语言的科学家和工程师来说,C#是一个值得考虑的选择,特别是在处理大量数值计算和数据处理任务时。
2013-10-22 上传
C#科学计算讲义光盘源码,找了好久才收集到, VS2010版. 引言 1 第1章 C#程序设计基础 9 1.1 计算机、程序设计与算法 9 1.1.1 计算机结构 9 1.1.2 操作系统 10 1.1.3 机器语言与高级语言 10 1.1.4 程序设计与算法 10 1.2 C#历史与概述 11 1.2.1 C语言:结构化编程语言的高峰 11 1.2.2 C 语言; 面向对象与大型程序 11 1.2.3 Java语言:可移植、安全性与Internet 11 1.2.4 C#;.NET主打语言 12 1.3 集成开发环境介绍 12 1.4 面向对象程序设计 16 1.4.1 封装 16 1.4.2 多态 16 1.4.3 继承 17 1.5 数据类型与运算符 17 1.5.1 简单数据类型 17 1.5.2 数组 17 1.5.3 运算符 17 1.5.4 赋值运算符 18 1.6 程序控制结构 18 1.6.1 顺序结构 18 1.6.2 分支结构 18 1.6.3 循环结构 20 1.6.4 控制结构的嵌套 21 1.7 类的设计及对象实现 21 1.7.1 定义类 22 1.7.2 创建对象 22 1.7.3 方法 22 1.7.4 构造函数 23 1.7.5 析构函数与垃圾回收 23 1.8 运算符重载及索引器 24 1.8.1 运算符重载 24 1.8.2 索引器 26 1.8.3 面向对象思想在C#程序设计中的重要性 27 1.9 GUI编程 28 1.10 本章小结31 第2章 线性方程组迭代解法 32 2.1 Jacobi 迭代法 32 2.1.1 基本原理 32 2.1.2 实验内容与数据 33 2.1.3 程序源代码 33 2.1.4 实验结论 37 2.2 Gauss-Seidel迭代法 38 2.2.1 基本原理 38 2.2.2 实验内容与数据 39 2.2.3 程序源代码 39 2.2.4 实验结论 43 2.3 逐次超松弛迭代法44 2.3.1 基本原理 44 2.3.2 实验内容与数据 44 2.3.3 程序源代码 45 2.3.4 实验结论 49 2.4 Richardson迭代法 50 2.4.1 基本原理 50 2.4.2 实验内容与数据 50 2.4.3 程序源代码 50 2.4.4 实验结论 54 2.5 广义Richardson迭代法 55 2.5.1 基本原理 55 2.5.2 实验内容与数据 55 2.5.3 程序源代码 55 2.5.4 实验结论 60 2.6 Jacobi超松弛迭代法 60 2.6.1 基本原理 60 2.6.2 实验内容与数据 61 2.6.3 程序源代码 61 2.6.4 实验结论 65 2.7 最速下降法 66 2.7.1 基本原理 66 2.7.2 实验内容与数据 66 2.7.3 程序源代码 67 2.7.4 实验结论 71 2.8 共轭梯度法 72 2.8.1 基本原理 72 2.8.2 实验内容与数据 72 2.8.3 程序源代码 72 2.8.4 实验结论 77 2.9 本章小结 77 第3章 线性方程组的直接解法 78 3.1 三角方程组 78 3.1.1 基本原理 78 3.1.2 实验内容与数据 79 3.1.3 程序代码 79 3.1.4 实验结论 83 3.2 高斯消去法 83 3.2.1 基本原理 83 3.2.2 实验内容与数据 84 3.2.3 程序源代码 84 3.2.4 实验结论 89 3.3 选主元消去法 90 3.3.1 基本原理 90 3.3.2 实验内容与数据 90 3.3.3 程序源代码 90 3.3.4 实验结论 96 3.4 Crout分解 97 3.4.1 基本原理 97 3.4.2 实验内容与数据 98 3.4.3 程序源代码 98 3.4.4 实验结论 103 3.5 Doolittle分解 103 3.5.1 基本原理 103 3.5.2 实验内容与数据 104 3.5.3 程序源代码 104 3.5.4 实验结论 108 3.6 追赶法计算三对角方程 109 3.6.1 基本原理 109 3.6.2 实验内容与数据 110 3.6.3 程序源代码 110 3.6.4 实验结论 114 3.7 行列式的计算 115 3.7.1 基本原理 115 3.7.2 实验内容与数据 115 3.7.3 程序源代码 115 3.7.4 实验结论 119 3.8 本章小结 120 第4章 正交变换与最小二乘计算方法 121 4.1 对称正定阵的Cholesky分解 121 4.1.1 基本原理 121 4.1.2 实验内容与数据 122 4.1.3 程序源代码 122 4.1.4 实验结论 126 4.2 不开平方的Cholesky分解 127 4.2.1 基本原理 127 4.2.2 实验内容与数据 127 4.2.3 程序源代码 127 4.2.4 实验结论 132 4.3 QR分解之Householder镜像变换方法 133 4.3.1 基本原理 133 4.3.2 实验内容与数据 134 4.3.3 程序源代码 134 4.3.4 实验结论 140 4.4 修正的Gram-Schimdt正交化方法 141 4.4.1 基本原理 141 4.4.2 实验内容与数据 142 4.4.3 程序源代码 142 4.4.4 实验结论 147 4.5 求解法方程计算最小二乘问题 147 4.5.1 基本原理 147 4.5.2 实验内容与数据 149 4.5.3 程序源代码 149 4.5.4 实验结论 157 4.6 QR分解法计算最小二乘问题 158 4.6.1 基本原理 158 4.6.2 实验内容与数据 159 4.6.3 程序源代码 159 4.6.4 实验结论 167 4.7 加权最小二乘与Gauss-Markov估计 167 4.7.1 基本原理 167 4.7.2 实验内容与数据 169 4.7.3 程序源代码 169 4.7.4 实验结论 178 4.8 具有先验信息的贝叶斯估计 178 4.8.1 基本原理 178 4.8.2 实验内容与数据 179 4.8.3 程序源代码 179 4.8.4 实验结论 189 4.9 工程应用中最小二乘法的实用方法 191 4.10 本章小结 192 第5章 鲁棒估计 193 5.1 M估计的IGGI方案 193 5.1.1 基本原理 193 5.1.2 实验内容与数据 194 5.1.3 程序源代码 196 5.1.4 实验结论 208 5.2 Hampel函数作标准等价权 210 5.2.1 基本原理 210 5.2.2 实验内容与数据 210 5.2.3 程序源代码 212 5.2.4 实验结论 224 5.3 Huber估计 227 5.3.1 基本原理 227 5.3.2 实验内容与数据 227 5.3.3 程序源代码 229 5.3.4 实验结论 241 5.4 本章小结 243 第6章 随机数 244 6.1 乘同余法均匀分布随机数发生器 244 6.1.1 基本原理 244 6.1.2 实验内容与数据 244 6.1.3 程序源代码 244 6.1.4 实验结论 248 6.2 混合同余法均匀分布随机数发生器 249 6.2.1 基本原理 249 6.2.2 实验内容与数据 249 6.2.3 程序源代码 249 6.2.4 实验结论 253 6.3 正态分布随机数 253 6.3.1 基本原理 253 6.3.2 实验内容与数据 254 6.3.3 程序源代码 254 6.3.4 实验结论 261 6.4 蒙特卡罗方法介绍 261 6.4.1 基本原理 261 6.4.2 实验内容与数据 262 6.4.3 程序源代码 262 6.4.4 实验结论 265 6.5 本章小结 265 第7章 插值法 266 7.1 拉格朗日插值 266 7.1.1 基本原理 266 7.1.2 实验内容与数据 266 7.1.3 程序源代码 266 7.1.4 实验结论 270 7.2 牛顿插值法 271 7.2.1 基本原理 271 7.2.2 实验内容与数据 271 7.2.3 程序源代码 271 7.2.4 实验结论 276 7.3 Hermite插值法 276 7.3.1 基本原理 276 7.3.2 实验内容与数据 277 7.3.3 程序源代码 277 7.3.4 实验结论 281 7.4 本章小结 281 第8章 非线性方程数值解法 282 8.1 Picard迭代法 282 8.1.1 基本原理 282 8.1.2 实验内容与数据 283 8.1.3 程序源代码 283 8.1.4 实验结论 285 8.2 牛顿迭代法 285 8.2.1 基本原理 285 8.2.2 实验内容与数据 286 8.2.3 程序源代码 286 8.2.4 实验结论 289 8.3 割线法 289 8.3.1 基本原理 289 8.3.2 实验内容与数据 290 8.3.3 程序源代码 290 8.3.4 实验结论 293 8.4 重根时的迭代改进 293 8.4.1 基本原理 293 8.4.2 实验内容与数据 294 8.4.3 程序源代码 294 8.4.4 实验结论 297 8.5 应用范例:债券到期收益率的计算 297 8.5.1 基本原理 297 8.5.2 实验内容与数据 298 8.5.3 程序源代码 298 8.5.4 实验结论 304 8.6 本章小结 304 第9章 非线性最优化 305 9.1 一维搜索之黄金分割法 305 9.1.1 基本原理 305 9.1.2 实验内容与数据 306 9.1.3 程序源代码 306 9.1.4 实验结论 310 9.2 连续抛物线插值法 311 9.2.1 基本原理 311 9.2.2 实验内容与数据 312 9.2.3 程序源代码 312 9.2.4 实验结论 316 9.3 多维非线性最优化牛顿下山法 317 9.3.1 基本原理 317 9.3.2 实验内容与数据 318 9.3.3 程序源代码 318 9.3.4 实验结论 325 9.4 最速下降法 327 9.4.1 基本原理 327 9.4.2 实验内容与数据 327 9.4.3 程序源代码 327 9.4.4 实验结论 333 9.5 变尺度之DFP方法 333 9.5.1 基本原理 333 9.5.2 实验内容与数据 335 9.5.3 程序源代码 335 9.5.4 实验结论 341 9.6 拟牛顿之BFGS方法 341 9.6.1 基本原理 341 9.6.2 实验内容与数据 342 9.6.3 程序源代码 342 9.6.4 实验结论 349 9.7 本章小结349 第10章 常微分方程(组)的数值方法350 10.1 经典Rung-Kutta方法 350 10.1.1 基本原理 350 10.1.2 实验内容与数据 351 10.1.3 程序源代码 351 10.1.4 实验结论 353 10.2 Gill方法 354 10.2.1 基本原理 354 10.2.2 实验内容与数据 355 10.2.3 程序源代码 355 10.2.4 实验结论 357 10.3 Rung-Kutta方法计算微分方程组 358 10.3.1 基本原理 358 10.3.2 实验内容与数据 359 10.3.3 程序源代码 359 10.3.4 实验结论 363 10.4 Adams-Bashforth三步三阶方法 364 10.4.1 基本原理 364 10.4.2 实验内容与数据 365 10.4.3 程序源代码 365 10.4.4 实验结论 371 10.5 Adams-Bashforth四步四阶方法 372 10.5.1 基本原理 372 10.5.2 实验内容与数据 372 10.5.3 程序源代码 372 10.5.4 实验结论 379 10.6 三阶Adams预测校正方法(PECE) 380 10.6.1 基本原理 380 10.6.2 实验内容与数据 381 10.6.3 程序源代码 381 10.6.4 实验结论 387 10.7 四阶Adams预测校正方法(PECE) 388 10.7.1 基本原理 388 10.7.2 实验内容与数据 389 10.7.3 程序源代码 389 10.7.4 实验结论 396 10.8 辛结构与哈密顿系统的辛算法介绍 397 10.8.1 基本原理 397 10.8.2 实验内容与数据 400 10.8.3 程序源代码 400 10.8.4 实验结论 405 10.9 本章小结 406 附录A C# 数值代数类的抽象与设计 408 附录B 动态链接库与混合编程 428 B.1 静态链接库与动态链接库 428 B.2 C#调用Fortran动态链接库范例 428 B.3 调用可执行函数 433 附录C Linux下C#开发与跨平台编程介绍 444 C.1 Mono简介 444 C.2 Linux下C#IDE开发范例 444