优化MNIST识别:滑动平均与LeNet-5参数调整
需积分: 9 71 浏览量
更新于2024-08-05
收藏 5KB TXT 举报
本资源是一份针对初学者的TensorFlow代码示例,用于实现滑动平均参数范围在MNIST手写数字识别任务中的应用,特别采用了经典的LeNet-5架构。该代码库的问题已经修复并可供运行,以便学习者理解变量作用域(variable_scope)以及如何构建一个简单的全连接神经网络。
首先,我们关注标题中的关键点,"滑动平均参数范围"可能指的是在训练过程中使用移动平均(moving average)来平滑权重更新,这是一种防止过拟合的策略,通过在训练步骤中逐渐积累并平均模型参数来获得更稳定的性能。
代码中定义了几个重要的参数:
1. **INPUT_NODE** 和 **OUTPUT_NODE** 分别表示输入层和输出层的节点数量,这里是MNIST数据集的28x28像素图像(每个像素作为输入)和10个类别(输出节点)。
2. **LAYER1_NODE** 是隐藏层的节点数,这里是500个神经元。
3. **BATCH_SIZE** 指定每次训练的样本数量,这里是100个样本。
4. **LEARNING_RATE_BASE** 和 **LEARNING_RATE_DECAY** 是学习率的基础值和衰减率,分别设置为0.8和0.99。
5. **REGULARAZTION_RATE** 是正则化率,用于防止过拟合,这里设置为0.0001。
6. **TRAINING_STEPS** 是训练轮数,总共有5000步。
7. **MOVING_AVERAGE_DECAY** 是移动平均的衰减因子,用于控制滑动平均窗口大小。
核心函数`get_weight_variable`用于创建权重变量,其中`shape`是变量的形状,`regularizer`是一个可选的正则化器。如果提供了正则器,它会被添加到损失集合中。`inferface_v`函数负责构建神经网络的第一层,使用`variable_scope`来管理变量,确保在整个网络中具有清晰的命名空间,并且在多层结构中复用权重。
在`inferface_v`函数中,`variable_scope('layer1')`用于定义一个名为'layer1'的变量作用域,内部调用`get_weight_variable`生成第一层的权重。这展示了如何利用`variable_scope`来组织和管理不同层级的权重变量,使得代码更具模块化。
这份代码示例为初学者提供了一个实战教程,介绍了如何在TensorFlow中使用LeNet-5模型进行MNIST数据集的手写数字识别,同时还涉及了滑动平均参数范围的实践、变量作用域的使用以及正则化的应用。对于想学习深度学习基础和TensorFlow编程的读者来说,这是一个很好的学习资源。
2022-03-07 上传
2024-05-18 上传
2022-09-15 上传
2024-04-07 上传
2022-08-08 上传
2021-02-12 上传
2023-01-28 上传
2023-07-17 上传
2022-07-15 上传
tzshun_whu
- 粉丝: 4
- 资源: 3
最新资源
- JHU荣誉单变量微积分课程教案介绍
- Naruto爱好者必备CLI测试应用
- Android应用显示Ignaz-Taschner-Gymnasium取消课程概览
- ASP学生信息档案管理系统毕业设计及完整源码
- Java商城源码解析:酒店管理系统快速开发指南
- 构建可解析文本框:.NET 3.5中实现文本解析与验证
- Java语言打造任天堂红白机模拟器—nes4j解析
- 基于Hadoop和Hive的网络流量分析工具介绍
- Unity实现帝国象棋:从游戏到复刻
- WordPress文档嵌入插件:无需浏览器插件即可上传和显示文档
- Android开源项目精选:优秀项目篇
- 黑色设计商务酷站模板 - 网站构建新选择
- Rollup插件去除JS文件横幅:横扫许可证头
- AngularDart中Hammock服务的使用与REST API集成
- 开源AVR编程器:高效、低成本的微控制器编程解决方案
- Anya Keller 图片组合的开发部署记录