Python深度学习计算机视觉实战

需积分: 14 3 下载量 91 浏览量 更新于2024-07-18 收藏 26.43MB PDF 举报
"深度学习用于计算机视觉的Python实践" 本书《Deep Learning for Computer Vision with Python》由Dr. Adrian Rosebrock撰写,旨在介绍如何利用Python进行深度学习,并应用于计算机视觉领域。出版于2017年,是PyImageSearch.com发布的一部作品,该网站专注于图像处理和计算机视觉技术。 在内容方面,这本书分为两个主要部分,即Starter Bundle(初学者套件)和Practitioner Bundle(实践者套件),旨在满足不同水平读者的需求: 1.1章节作者分享了自己学习深度学习的错误方式,并提出正确的学习路径。这表明书中的内容将基于作者的经验教训,帮助读者避免常见的学习陷阱。 1.2章节详细介绍了本书的目标读者群体: - 刚入门深度学习的读者:书中可能包含基础知识和概念,帮助初学者理解深度学习的基本原理,以及如何用Python实现这些原理。 - 已有深度学习实践经验的读者:作者也考虑到了有经验的从业者,书中可能会提供更高级的技巧、最佳实践和实际应用案例,以提升他们的技能和知识。 1.3章节介绍了书的组织结构: - Volume #1: Starter Bundle:这部分可能是针对初学者的,涵盖了深度学习的基础知识,包括神经网络、卷积神经网络(CNNs)等,以及如何使用Python库如TensorFlow和Keras来构建模型。 - Volume #2: Practitioner Bundle:这部分则可能深入到更复杂的应用和技巧,如迁移学习、模型优化、数据预处理策略、实时计算机视觉系统等,适合已经有一定基础的读者进一步提升。 通过阅读这本书,读者不仅可以掌握深度学习的基本概念,还能了解到如何将这些知识应用于解决计算机视觉问题,例如图像分类、目标检测、图像分割等。此外,作者鼓励读者支持原创内容,如果你没有购买此书而获得了副本,应该考虑购买正版,以支持此类技术书籍的持续创作。 《Deep Learning for Computer Vision with Python》是一本面向不同层次读者的深度学习和计算机视觉指南,通过Python语言教授读者如何构建和应用深度学习模型,以解决实际问题。无论是对于想要入行的新人,还是寻求提升的专业人士,这本书都提供了丰富的学习资源和实践经验。
2019-06-22 上传
Welcome to the Practitioner Bundle of Deep Learning for Computer Vision with Python! This volume is meant to be the next logical step in your deep learning for computer vision education after completing the Starter Bundle. At this point, you should have a strong understanding of the fundamentals of parameterized learning, neural net works, and Convolutional Neural Networks (CNNs). You should also feel relatively comfortable using the Keras library and the Python programming language to train your own custom deep learning networks. The purpose of the Practitioner Bundle is to build on your knowledge gained from the Starter Bundle and introduce more advanced algorithms, concepts, and tricks of the trade — these tech- niques will be covered in three distinct parts of the book. The first part will focus on methods that are used to boost your classification accuracy in one way or another. One way to increase your classification accuracy is to apply transfer learning methods such as fine-tuning or treating your network as a feature extractor. We’ll also explore ensemble methods (i.e., training multiple networks and combining the results) and how these methods can give you a nice classification boost with little extra effort. Regularization methods such as data augmentation are used to generate additional training data – in nearly all situations, data augmentation improves your model’s ability to generalize. More advanced optimization algorithms such as Adam [1], RMSprop [2], and others can also be used on some datasets to help you obtain lower loss. After we review these techniques, we’ll look at the optimal pathway to apply these methods to ensure you obtain the maximum amount of benefit with the least amount of effort.