三角模糊数TOPSIS与TRIZ在产品设计中的应用研究

需积分: 0 0 下载量 191 浏览量 更新于2024-09-07 收藏 1.91MB PDF 举报
"该研究论文探讨了一种将逼近理想解排序法(TOPSIS)与发明问题解决理论(TRIZ)相结合的产品设计方法,利用三角模糊数来处理产品需求的综合评价,以此确定关键设计问题,并借助TRIZ的参数和发明原理解决创新问题,提供详细的产品设计方案。这种方法结合了TOPSIS的评价优势和TRIZ的创新优势,为产品创新设计提供了完整的流程。文中通过插座设计案例验证了该方法的有效性。" 在产品设计领域,评价和创新是两个至关重要的环节。传统的评价方法可能无法全面、准确地反映复杂的产品需求,而创新设计则需要对问题有深入的理解和独特的解决方案。这篇研究论文针对这些问题,提出了一个创新的解决方案——基于三角模糊数的TOPSIS与TRIZ集成方法。 首先,逼近理想解排序法(TOPSIS)是一种多准则决策分析工具,用于处理具有多个相互冲突的评价指标的问题。在这个方法中,三角模糊数被引入来处理不确定性和模糊性,使得产品需求的评价更加客观和全面。通过对各个指标赋予权重并转换为三角模糊数,可以计算出每个产品选项的接近理想解的程度,从而对产品需求进行综合排序,找出关键的设计问题。 其次,TRIZ(发明问题解决理论)是一种系统性的创新方法论,它基于大量的专利分析,提炼出了通用的工程参数和解决矛盾的40个发明原理。在确定了产品设计的关键问题后,TRIZ的矛盾矩阵和发明原理能帮助设计师找到创新的解决方案,打破常规思维,提出独特的产品设计方案。 结合这两种方法,设计师可以先运用TOPSIS对产品需求进行科学的评价,然后利用TRIZ来解决评价过程中识别出的关键问题,推动产品的创新设计。这种方法的优势在于它结合了评价的严谨性和创新的灵活性,为产品设计提供了完整的流程,既确保了评价的公正性,也激发了创新的可能性。 论文通过一个插座设计的实例,展示了如何运用这种集成方法进行实际操作,并验证了其在解决实际设计问题时的有效性和实用性。这表明,将TOPSIS和TRIZ相结合可以为产品设计带来新的视角和方法,有助于提升产品设计的质量和创新性。 该研究对于从事产品设计和开发的工程师及研究人员具有很高的参考价值,它提供了一个将量化评价与创新思维融合的实用工具,有助于推动产品设计领域的进步。